首頁  技術文章  橢偏儀在位表征電化學沉積的係統搭建(十六)- 可行性分析

橢偏儀在位表征電化學沉積的係統搭建(十六)- 可行性分析

發布時間:2024-04-10 13:39:22 瀏覽量:1056 作者:Alex

摘要

加入透明溶液對基底進行測試是可行的,但是溶液厚度會(hui) 對測量結果帶來數值上的上下移動,溶液達到一定厚度後測試得到的數據會(hui) 趨於(yu) 穩定。在該波段溶液的存在會(hui) 帶來數據的波動。雖然敞開器皿作為(wei) 池體(ti) 很簡單方便,但是它也存在溶液敞開會(hui) 有溶液紊動,且存在測試時間長、溶液易被汙染等對測試不利的因素,故需要重新設計其他電解池。

正文


橢偏儀(yi) 在位表征電化學沉積的係統搭建(十六)- 可行性分析


3.2.4可行性分析


(1)光路可行性分析


如圖3-4所示,為(wei) 了保證對電極不影響光路的傳(chuan) 輸,其可活動的範圍為(wei) 圖中h所示。如果半圓直徑為(wei) 50px,對電極寬25px,上限由電極碰到池體(ti) 壁決(jue) 定,則此時入射光的極限入射角為(wei) ɵ1=30°;下限由入射光的入射角決(jue) 定,圖中的入射角ɵ2=55°,則電極可調的極限zui低位置如圖所示。所以在滿足對電極不擋光的情況下,入射光的入射角可調範圍是30°<ɵ<90°。我們(men) 的工對電極選25px×25px,觀察窗口直徑為(wei) 75px,所以實際上我們(men) 可以調節的入射角度範圍更大,且而常用的入射角度為(wei) 55°到80°,所以這樣設計的觀察窗口和電極放置可以滿足要求。


圖3-4觀察窗口光路截麵分析圖


用鍍金矽片和電解液(透明溶液)在玻璃皿中調節了準直,不經過玻璃皿,溶液中鍍金矽片可以很好的反光;後又把玻璃皿的蓋子蓋上,驗證得知,在垂直於(yu) 玻璃蓋、空氣、溶液界麵入射時,光斑可以很好的打到電極片上,基本不受光路影響,斜射時光斑就散了。經過實際驗證,該池體(ti) 設計方案可行。


關(guan) 於(yu) 調節光斑使其達到圓心,這也可以實現的,因為(wei) 一旦不是垂直於(yu) 池體(ti) 入射,光斑就是分散的。


(2)電極的選擇


如圖3-5,用Comsol對如圖放置的長正方形電極和圓電極進行了陽極電流密度的模擬結果如圖3-6示。


圖3-5電極電流密度模擬圖


從(cong) 圖3-6中可以看出邊緣效應隨著電極的增大而減小,考慮到電解池尺寸,則選則25px×25px的電極片是比較合適的。從(cong) c、d對比可知,圓盤電極的邊緣化效應比長方形電極邊緣化效應更嚴(yan) 重,所以選片電極更合適。


圖3-6不同尺寸電極無量綱電流密度模擬圖(a)6.25px×6.25px;(b)12.5px×12.5px;(c)25px×25px;(d)半徑為(wei) 12.5px的圓盤電極


3.2.5池體(ti) 製作


現已經完成了製作,如圖3-7所示。池體(ti) 兩(liang) 端的長方體(ti) 及電極載體(ti) 是亞(ya) 克力板製作,中間的半圓柱體(ti) 由石英玻璃製作,以上部件定製完成,後期拚接自主完成。


圖3-7電解池實物圖


了解更多橢偏儀(yi) 詳情,請訪問上海昊量光電的官方網頁:

https://www.weilancj.com/three-level-56.html


更多詳情請聯係昊量光電/歡迎直接聯係昊量光電

關(guan) 於(yu) 昊量光電:

上海昊量光電設備有限国产黄色在线观看是光電国产欧美在线專(zhuan) 業(ye) 代理商,国产欧美在线包括各類激光器、光電調製器、光學測量設備、光學元件等,涉及国产成人在线观看免费网站涵蓋了材料加工、光通訊、生物醫療、科學研究、國防、量子光學、生物顯微、物聯傳(chuan) 感、激光製造等;可為(wei) 客戶提供完整的設備安裝,培訓,硬件開發,軟件開發,係統集成等服務。

您可以通過我們(men) 昊量光電的官方網站www.weilancj.com了解更多的国产欧美在线信息,或直接來電谘詢4006-888-532。


相關(guan) 文獻:

[1] WONG H S P, FRANK D J, SOLOMON P M et al. Nanoscale cmos[J]. Proceedings of the IEEE, 1999, 87(4): 537-570.

[2] LOSURDO M, HINGERL K. ellipsometry at the nanoscale[M]. Springer Heidelberg New York Dordrecht London. 2013.

[3] DYRE J C. Universal low-temperature ac conductivity of macroscopically disordered nonmetals[J]. Physical Review B, 1993, 48(17): 12511-12526. DOI:10.1103/PhysRevB.48.12511.

[4] CHEN S, KÜHNE P, STANISHEV V et al. On the anomalous optical conductivity dISPersion of electrically conducting polymers: Ultra-wide spectral range ellipsometry combined with a Drude-Lorentz model[J]. Journal of Materials Chemistry C, 2019, 7(15): 4350-4362.

[5] 陳籃,周岩. 膜厚度測量的橢偏儀(yi) 法原理分析[J]. 大學物理實驗, 1999, 12(3): 10-13.

[6] ZAPIEN J A, COLLINS R W, MESSIER R. Multichannel ellipsometer for real time spectroscopy of thin film deposition from 1.5 to 6.5 eV[J]. Review of Scientific Instruments, 2000, 71(9): 3451-3460.

[7] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.

[8] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.

[9] YUAN M, YUAN L, HU Z et al. In Situ Spectroscopic Ellipsometry for Thermochromic CsPbI3 Phase Evolution Portfolio[J]. Journal of Physical Chemistry C, 2020, 124(14): 8008-8014.

[10] 焦楊.橢偏儀(yi) 在位表征電化學沉積的係統搭建.雲(yun) 南大學說是論文,2022.

[11] CANEPA M, MAIDECCHI G, TOCCAFONDI C et al. Spectroscopic ellipsometry of self assembLED monolayers: Interface effects. the case of phenyl selenide SAMs on gold[J]. Physical Chemistry Chemical Physics, 2013, 15(27): 11559-11565. DOI:10.1039/c3cp51304a.

[12] FUJIWARA H, KONDO M, MATSUDA A. Interface-layer formation in microcrystalline Si:H growth on ZnO substrates studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Journal of Applied Physics, 2003, 93(5): 2400-2409.

[13] FUJIWARA H, TOYOSHIMA Y, KONDO M et al. Interface-layer formation mechanism in (formula presented) thin-film growth studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Physical Review B - Condensed Matter and Materials Physics, 1999, 60(19): 13598-13604.

[14] LEE W K, KO J S. Kinetic model for the simulation of hen egg white lysozyme adsorption at solid/water interface[J]. Korean Journal of Chemical Engineering, 2003, 20(3): 549-553.

[15] STAMATAKI K, PAPADAKIS V, EVEREST M A et al. Monitoring adsorption and sedimentation using evanescent-wave cavity ringdown ellipsometry[J]. Applied Optics, 2013, 52(5): 1086-1093.

[16] VIEGAS D, FERNANDES E, QUEIRÓS R et al. Adapting Bobbert-Vlieger model to spectroscopic ellipsometry of gold nanoparticles with bio-organic shells[J]. Biomedical Optics Express, 2017, 8(8): 3538.

[17] ARWIN H. Application of ellipsometry techniques to biological materials[J]. Thin Solid Films, 2011, 519(9): 2589-2592.

[18] ZIMMER A, VEYS-RENAUX D, BROCH L et al. In situ spectroelectrochemical ellipsometry using super continuum white laser: Study of the anodization of magnesium alloy [J]. Journal of Vacuum Science & Technology B, 2019, 37(6): 062911.

[19] ZANGOOIE S, BJORKLUND R, ARWIN H. Water Interaction with Thermally Oxidized Porous Silicon Layers[J]. Journal of The Electrochemical Society, 1997, 144(11): 4027-4035.

[20] KYUNG Y B, LEE S, OH H et al. Determination of the optical functions of various liquids by rotating compensator multichannel spectroscopic ellipsometry[J]. Bulletin of the Korean Chemical Society, 2005, 26(6): 947-951.

[21] OGIEGLO W, VAN DER WERF H, TEMPELMAN K et al. Erratum to ― n-Hexane induced swelling of thin PDMS films under non-equilibrium nanofiltration permeation conditions, resolved by spectroscopic ellipsometry‖ [J. Membr. Sci. 431 (2013), 233-243][J]. Journal of Membrane Science, 2013, 437: 312..

[22] BROCH L, JOHANN L, STEIN N et al. Real time in situ ellipsometric and gravimetric monitoring for electrochemistry experiments[J]. Review of Scientific Instruments, 2007, 78(6).

[23] BISIO F, PRATO M, BARBORINI E et al. Interaction of alkanethiols with nanoporous cluster-assembled Au films[J]. Langmuir, 2011, 27(13): 8371-8376.

[24] 李廣立. 氧化亞(ya) 銅薄膜的製備及其光電性能研究[D]. 西南交通大學, 2016.

[25] 董金礦. 氧化亞(ya) 銅薄膜的製備及其光催化性能的研究[D]. 安徽建築大學, 2014.

[26] 張楨. 氧化亞(ya) 銅薄膜的電化學製備及其光催化和光電性能的研究[D]. 上海交通大學材料科 學與(yu) 工程學院, 2013.

[27] DISSERTATION M. Cellulose Derivative and Lanthanide Complex Thin Film Cellulose Derivative and Lanthanide Complex Thin Film[J]. 2017.

[28] NIE J, YU X, HU D et al. Preparation and Properties of Cu2O/TiO2 heterojunction Nanocomposite for Rhodamine B Degradation under visible light[J]. ChemistrySelect, 2020, 5(27): 8118-8128.

[29] STRASSER P, GLIECH M, KUEHL S et al. Electrochemical processes on solid shaped nanoparticles with defined facets[J]. Chemical Society Reviews, 2018, 47(3): 715-735.

[30] XU Z, CHEN Y, ZHANG Z et al. Progress of research on underpotential deposition——I. Theory of underpotential deposition[J]. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31(7): 1219-1230.

[31] PANGAROV n. Thermodynamics of electrochemical phase formation and underpotential metal deposition[J]. Electrochimica Acta, 1983, 28(6): 763-775.

[32] KAYASTH S. ELECTRODEPOSITION STUDIES OF RARE EARTHS[J]. Methods in Geochemistry and Geophysics, 1972, 6(C): 5-13.

[33] KONDO T, TAKAKUSAGI S, UOSAKI K. Stability of underpotentially deposited Ag layers on a Au(1 1 1) surface studied by surface X-ray scattering[J]. Electrochemistry Communications, 2009, 11(4): 804-807.

[34] GASPAROTTO L H S, BORISENKO N, BOCCHI N et al. In situ STM investigation of the lithium underpotential deposition on Au(111) in the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide[J]. Physical Chemistry Chemical Physics, 2009, 11(47): 11140-11145.

[35] SARABIA F J, CLIMENT V, FELIU J M. Underpotential deposition of Nickel on platinum single crystal electrodes[J]. Journal of Electroanalytical Chemistry, 2018, 819(V): 391-400.

[36] BARD A J, FAULKNER L R, SWAIN E et al. Fundamentals and Applications[M]. John Wiley & Sons, Inc, 2001.

[37] SCHWEINER F, MAIN J, FELDMAIER M et al. Impact of the valence band structure of Cu2O on excitonic spectra[J]. Physical Review B, 2016, 93(19): 1-16.

 [38] XIONG L, HUANG S, YANG X et al. P-Type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties[J]. Electrochimica Acta, 2011, 56(6): 2735-2739.

[39] KAZIMIERCZUK T, FRÖHLICH D, SCHEEL S et al. Giant Rydberg excitons in the copper oxide Cu2O[J]. Nature, 2014, 514(7522): 343-347.

[40] RAEBIGER H, LANY S, ZUNGER A. Origins of the p-type nature and cation deficiency in Cu2 O and related materials[J]. Physical Review B - Condensed Matter and Materials Physics, 2007, 76(4): 1-5.

[41] 舒雲(yun) . Cu2O薄膜的電化學製備及其光電化學性能的研究[D]. 雲(yun) 南大學物理與(yu) 天文學院,2019.

閱讀延伸

展示全部  up