依據實驗組前期對薄膜沉積的實驗,選擇-0.4mA進行兩(liang) 電極的恒流沉積,並用橢偏儀(yi) 進行在位監測,每沉積180s後進行300nm到800nm的橢偏測試。即在沉積180s、360s、540s、720s、900s、1080s後分別進行了橢偏儀(yi) 全譜測試,測試角度為(wei) 70°。
展示全部
橢偏儀(yi) 在位表征電化學沉積的係統搭建(二十二)- 沉積前裝置的橢偏數據
1形貌分析
圖4-2(a)是準在位監測後沉積1080s時測試得到的SEM圖,在1μm放大倍數下看到沉積的薄膜顆粒大小不等(~10-103nm),形態上為(wei) 不規則的塊狀。實驗組前期用三電極體(ti) 係(Au/Si工作電極,Pt網對電極,Ag/AgCl參比電極)恒壓法(-0.05V)常溫下(T=20℃)沉積30分鍾得到的結果如圖4-2(b)所示。與(yu) 恒壓沉積相比,沉積薄膜粒徑不均勻性更強。
圖4-2CU20薄膜的SEM圖:(a)沉積1080s(b)實驗組前期恒壓常溫沉積
2不同沉積時間橢偏數據的分析
對沉積時間為(wei) 180s、360s、540s、720s、900s、1080s的CU20薄膜分別進行了橢偏儀(yi) 全譜(300-800nm)測試,獲得橢偏參數以及樣品整體(ti) 的反射率和光學常數。
2.1沉積前裝置的橢偏數據
1、Psi、Delta、α、R實驗數據在-0.4mA時進行兩(liang) 電極的恒流沉積,並在每沉積180s以後進行300nm到800nm的橢偏測試。在這個(ge) 沉積電壓下,不同時間沉積的庫侖(lun) 量如表4-1所示。由X-ray測試知該電流下沉積的為(wei) CU20,假設法拉第效率為(wei) 100%,則所對應的生長速率分別為(wei) 0.94nm/s,相應沉積時間下的CU20沉積厚度如表4-1所示。
如圖4-3(a)所示,在沉積之前測試的Psi和Delta隨波長增加而增加,在500nm處有躍遷,在長波段(600nm-800nm)存在波動。圖4-3(b)是對應的吸收係數α和反射率R值隨波長的變化圖,可以看到R值在500nm處存在躍遷,趨近於(yu) zui大值1後,經文獻查閱知這屬於(yu) 基底Au的反射特性。說明沒有沉積之前所得到的橢偏測試結果主要反應的是襯底的信息,ITO和溶液對其影響甚小,也進一步證明該流動型裝置用於(yu) 監測薄膜沉積是可行的。對於(yu) α值,在370nm和600nm附近存在吸收峰,其和文獻中報道的ITO玻璃基板上Au納米膜的連續可見光吸收光譜出現的峰位十分接近,相對於(yu) 文獻其峰位發生藍移且兩(liang) 峰值存在差異,這可能是由於(yu) Au薄膜上溶液和ITO帶來的影響。
圖4-3 沉積0s時(a)Psi和Delta(b)R隨波長變化
2.2裝置對應的光學常數
圖4-4(a)是沉積之前測試得到的n、k隨波長的變化圖,從(cong) 圖中可以看到短波段圖線較平滑,長波段數據波動大。n值在500nm附近出現峰,k值在600nm附近出現峰。500nm處n值存在躍遷,說明該處附近可能有等離子體(ti) 共振峰的出現。
圖4-4(b)是沉積之前測試得到的、
,從(cong) 圖中可以看到短波段數據曲線平滑,長波段數據波動大。
、
均在500nm附近出現峰,這歸因於(yu) Au表麵等離子體(ti) 共振。
圖4-4 沉積0s時的n、k、、
隨波長的變化
經過以上分析可知,在該體(ti) 係下(ITO-溶液-Au/Si),較短波段得到的橢偏參數比較光滑,在較長波段得到橢偏數據波動比較大。與(yu) 較短波段相比長波段得到的數據誤差更小,該測試係統更適合較短波段測試。
了解更多橢偏儀(yi) 詳情,請訪問上海昊量光電的官方網頁:
https://www.weilancj.com/three-level-56.html
更多詳情請聯係昊量光電/歡迎直接聯係昊量光電
關(guan) 於(yu) 昊量光電:
上海昊量光電設備有限国产黄色在线观看是光電国产欧美在线專(zhuan) 業(ye) 代理商,国产欧美在线包括各類激光器、光電調製器、光學測量設備、光學元件等,涉及国产成人在线观看免费网站涵蓋了材料加工、光通訊、生物醫療、科學研究、國防、量子光學、生物顯微、物聯傳(chuan) 感、激光製造等;可為(wei) 客戶提供完整的設備安裝,培訓,硬件開發,軟件開發,係統集成等服務。
您可以通過我們(men) 昊量光電的官方網站www.weilancj.com了解更多的国产欧美在线信息,或直接來電谘詢4006-888-532。
參考文獻
[1] WONG H S P, FRANK D J, SOLOMON P M et al. Nanoscale cmos[J]. Proceedings of the IEEE, 1999, 87(4): 537-570.
[2] LOSURDO M, HINGERL K. ellipsometry at the nanoscale[M]. Springer Heidelberg New York Dordrecht London. 2013.
[3] DYRE J C. Universal low-temperature ac conductivity of macroscopically disordered nonmetals[J]. Physical Review B, 1993, 48(17): 12511-12526. DOI:10.1103/PhysRevB.48.12511.
[4] CHEN S, KÜHNE P, STANISHEV V et al. On the anomalous optical conductivity dISPersion of electrically conducting polymers: Ultra-wide spectral range ellipsometry combined with a Drude-Lorentz model[J]. Journal of Materials Chemistry C, 2019, 7(15): 4350-4362.
[5] 陳籃,周岩. 膜厚度測量的橢偏儀(yi) 法原理分析[J]. 大學物理實驗, 1999, 12(3): 10-13.
[6] ZAPIEN J A, COLLINS R W, MESSIER R. Multichannel ellipsometer for real time spectroscopy of thin film deposition from 1.5 to 6.5 eV[J]. Review of Scientific Instruments, 2000, 71(9): 3451-3460.
[7] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.
[8] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.
[9] YUAN M, YUAN L, HU Z et al. In Situ Spectroscopic Ellipsometry for Thermochromic CsPbI3 Phase Evolution Portfolio[J]. Journal of Physical Chemistry C, 2020, 124(14): 8008-8014.
[10] 焦楊景.橢偏儀(yi) 在位表征電化學沉積的係統搭建.雲(yun) 南大學說是論文,2022.
[11] CANEPA M, MAIDECCHI G, TOCCAFONDI C et al. Spectroscopic ellipsometry of self assembLED monolayers: Interface effects. the case of phenyl selenide SAMs on gold[J]. Physical Chemistry Chemical Physics, 2013, 15(27): 11559-11565. DOI:10.1039/c3cp51304a.
[12] FUJIWARA H, KONDO M, MATSUDA A. Interface-layer formation in microcrystalline Si:H growth on ZnO substrates studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Journal of Applied Physics, 2003, 93(5): 2400-2409.
[13] FUJIWARA H, TOYOSHIMA Y, KONDO M et al. Interface-layer formation mechanism in (formula presented) thin-film growth studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Physical Review B - Condensed Matter and Materials Physics, 1999, 60(19): 13598-13604.
[14] LEE W K, KO J S. Kinetic model for the simulation of hen egg white lysozyme adsorption at solid/water interface[J]. Korean Journal of Chemical Engineering, 2003, 20(3): 549-553.
[15] STAMATAKI K, PAPADAKIS V, EVEREST M A et al. Monitoring adsorption and sedimentation using evanescent-wave cavity ringdown ellipsometry[J]. Applied Optics, 2013, 52(5): 1086-1093.
[16] VIEGAS D, FERNANDES E, QUEIRÓS R et al. Adapting Bobbert-Vlieger model to spectroscopic ellipsometry of gold nanoparticles with bio-organic shells[J]. Biomedical Optics Express, 2017, 8(8): 3538.
[17] ARWIN H. Application of ellipsometry techniques to biological materials[J]. Thin Solid Films, 2011, 519(9): 2589-2592.
[18] ZIMMER A, VEYS-RENAUX D, BROCH L et al. In situ spectroelectrochemical ellipsometry using super continuum white laser: Study of the anodization of magnesium alloy [J]. Journal of Vacuum Science & Technology B, 2019, 37(6): 062911.
[19] ZANGOOIE S, BJORKLUND R, ARWIN H. Water Interaction with Thermally Oxidized Porous Silicon Layers[J]. Journal of The Electrochemical Society, 1997, 144(11): 4027-4035.
[20] KYUNG Y B, LEE S, OH H et al. Determination of the optical functions of various liquids by rotating compensator multichannel spectroscopic ellipsometry[J]. Bulletin of the Korean Chemical Society, 2005, 26(6): 947-951.
[21] OGIEGLO W, VAN DER WERF H, TEMPELMAN K et al. Erratum to ― n-Hexane induced swelling of thin PDMS films under non-equilibrium nanofiltration permeation conditions, resolved by spectroscopic ellipsometry‖ [J. Membr. Sci. 431 (2013), 233-243][J]. Journal of Membrane Science, 2013, 437: 312..
[22] BROCH L, JOHANN L, STEIN N et al. Real time in situ ellipsometric and gravimetric monitoring for electrochemistry experiments[J]. Review of Scientific Instruments, 2007, 78(6).
[23] BISIO F, PRATO M, BARBORINI E et al. Interaction of alkanethiols with nanoporous cluster-assembled Au films[J]. Langmuir, 2011, 27(13): 8371-8376.
[24] 李廣立. 氧化亞(ya) 銅薄膜的製備及其光電性能研究[D]. 西南交通大學, 2016.
[25] 董金礦. 氧化亞(ya) 銅薄膜的製備及其光催化性能的研究[D]. 安徽建築大學, 2014.
[26] 張楨. 氧化亞(ya) 銅薄膜的電化學製備及其光催化和光電性能的研究[D]. 上海交通大學材料科 學與(yu) 工程學院, 2013.
[27] DISSERTATION M. Cellulose Derivative and Lanthanide Complex Thin Film Cellulose Derivative and Lanthanide Complex Thin Film[J]. 2017.
[28] NIE J, YU X, HU D et al. Preparation and Properties of Cu2O/TiO2 heterojunction Nanocomposite for Rhodamine B Degradation under visible light[J]. ChemistrySelect, 2020, 5(27): 8118-8128.
[29] STRASSER P, GLIECH M, KUEHL S et al. Electrochemical processes on solid shaped nanoparticles with defined facets[J]. Chemical Society Reviews, 2018, 47(3): 715-735.
[30] XU Z, CHEN Y, ZHANG Z et al. Progress of research on underpotential deposition——I. Theory of underpotential deposition[J]. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31(7): 1219-1230.
[31] PANGAROV n. Thermodynamics of electrochemical phase formation and underpotential metal deposition[J]. Electrochimica Acta, 1983, 28(6): 763-775.
[32] KAYASTH S. ELECTRODEPOSITION STUDIES OF RARE EARTHS[J]. Methods in Geochemistry and Geophysics, 1972, 6(C): 5-13.
[33] KONDO T, TAKAKUSAGI S, UOSAKI K. Stability of underpotentially deposited Ag layers on a Au(1 1 1) surface studied by surface X-ray scattering[J]. Electrochemistry Communications, 2009, 11(4): 804-807.
[34] GASPAROTTO L H S, BORISENKO N, BOCCHI N et al. In situ STM investigation of the lithium underpotential deposition on Au(111) in the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide[J]. Physical Chemistry Chemical Physics, 2009, 11(47): 11140-11145.
[35] SARABIA F J, CLIMENT V, FELIU J M. Underpotential deposition of Nickel on platinum single crystal electrodes[J]. Journal of Electroanalytical Chemistry, 2018, 819(V): 391-400.
[36] BARD A J, FAULKNER L R, SWAIN E et al. Fundamentals and Applications[M]. John Wiley & Sons, Inc, 2001.
[37] SCHWEINER F, MAIN J, FELDMAIER M et al. Impact of the valence band structure of Cu2O on excitonic spectra[J]. Physical Review B, 2016, 93(19): 1-16.
[38] XIONG L, HUANG S, YANG X et al. P-Type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties[J]. Electrochimica Acta, 2011, 56(6): 2735-2739.
[39] KAZIMIERCZUK T, FRÖHLICH D, SCHEEL S et al. Giant Rydberg excitons in the copper oxide Cu2O[J]. Nature, 2014, 514(7522): 343-347.
[40] RAEBIGER H, LANY S, ZUNGER A. Origins of the p-type nature and cation deficiency in Cu2 O and related materials[J]. Physical Review B - Condensed Matter and Materials Physics, 2007, 76(4): 1-5.
[41] 舒雲(yun) . Cu2O薄膜的電化學製備及其光電化學性能的研究[D]. 雲(yun) 南大學物理與(yu) 天文學院,2019.
展示全部