展示全部
啁啾体布拉格光栅QCBG(量子光学,795&780)
,方向性强,相干性高等特点,飞秒激光微纳加工在复杂的三维微纳功能器件的加工领域具有独特的优势。目前传统的激光微纳加工技术均为逐点扫描的加工方式,加工效率无法满足实际生产的高效率需求。基于空间光调制器的计算全息技术可以实现灵活可控的光场分布,飞秒激光可以被精确的调制成预设的多焦点图案阵列,从而实现高效的并行加工,可以大大的提高加工效率。同时利用空间光调制器可以方便的生成贝塞尔光束,可以实现微环形结构的单次曝光式加工。关键词 空间光调制器 超快激光微纳加工 微纳加工 激光加工介绍: 空间光调制器(SLM)可以将信息加载到二维光学数据场中,是一种对光束进行调整的器件。通过控制加载到SLM上的 ...
有非常良好的相干性的光源,随着近四五十年激光技术的发展,激光器的种类,激光器的能量有了爆发性的增长,激光被越来越多的国产成人在线观看免费网站在通讯,工业,国防,医疗,农业等各个方面。激光加工作为传统材料加工方式的一种补充方式,在材料加工领域逐步发展成熟起来,那么我们先来了解一下激光加工的原理以及激光加工与传统加工方式有哪些不同。激光与物质的相互作用是激光加工的物理基础。因为激光必须被材料吸收并转化,才能用不同波长不同功率密度或者不同能量密度的激光进行不同的加工。激光与物质的相互作用涉及到激光物理,原子与分子物理,等离子体物理,固体与半导体物理,材料科学等广泛的学科领域,当激光作用到材料上时,电磁能先转化为电子激发 ...
的光束质量和相干性。N2 Laser(氮分子激光器,Nitrogen laser)337.1nm, 427nmAr+ Laser(氩离子激光器)488nm, 514.5nm, 351.1nm, 363.8nmHeNe Laser(氦氖激光器)632.8nm, 543.5nm, 594.1nm, 611.9nm, 1153nm, 1523nmCu Laser(铜蒸汽激光器)510.6nm, 578.2nmKr+ Laser(氪离子激光器)647.1nm, 676.4nmNd:YAG Laser(YAG激光器四倍频)266nm都是基于掺钕钇铝石榴石(Nd:YAG)的固体激光器,是市面上最常见的激光 ...
理自旋态时,相干性的损失。为了维持磁场敏感态,就需要去抑制这种弛豫。虽然可能有些反直觉,但是这一点可以通过增加蒸汽密度来实现。这样就增加了自旋交换碰撞率。在低磁场的环境下发生极高数量的碰撞,自旋在两次碰撞中没有足够的时间发生退相干,这就使得偏振态可以得到保持,从而也就维持了对外部磁场的敏感度。这被称为无自旋交换弛豫(Spin-Exchange Relaxation Free,SERF)区间。在SERF区间里,偏振气体宏观磁动量遵循Bloch等式——一组描述宏观磁场变化关于时间的方程。这样,外部磁场的变化就可以得到很好的描述。这种描述表明,通过测量透过气室的光强得到的蒸汽偏振,是关于外部磁场的洛 ...
光电导开关法图1 光电导开关法辐射太赫兹原理图如图1,太赫兹光电导天线是在低温生长的半导体表面上沉积两片金属电极,两端电极之间保持一条微米量级宽度的空隙。在光电导开关两端上施加偏置电压后,当飞秒激光聚焦到天线缝隙表面时,基底材料中的电子吸收能量并从价带跃迁到导带,在天线表面瞬间(10-14 s)生成光生载流子(电子)。电子在偏置电场的加速作用下定向迁移生成瞬态光电流,进而向外辐射太赫兹波。理论上只要外加电场足够强,太赫兹辐射就可以得到显著的增强,但是实际实验中过高的能量会导致光电导开关被损坏。另外半导体基底、金属电极的几何结构与泵浦激光脉冲持续时间共同影响着光电导天线(光电导开关)的性能。半导 ...
性、单色性、相干性,以及更高的亮度。那么,什么是受激辐射呢?一束光,实际上就是一束光子流,由无数具有一定动量和方向的光子所组成。而光子则是由原子能级跃迁所产生,当原子由基态(低能级)向激发态(高能级)跃迁时,需要从外界吸收一个光子;而当原子由激发态向基态跃迁时,则需要向外界释放一个光子。一个光子的能量:当我们用一个入射光子掠过原子时,就有一定几率使该原子由激发态向基态跃迁,从而释放出一个光子,最终,我们将得到两个光子(入射光子和受激辐射所产生的光子)。并且,原子受激辐射所产生的光子与原入射光的光子是性质全同的,即能量(频率)、偏振、相位都相同。这就是受激辐射的光放大现象,也是激光产生的底层机制 ...
应引起的输运相干性的改变就是一个很好的例子,它可以极大地改变通过隧道装置的峰值电流。因此,尽管通过微调振荡器强度和反交叉能量仍有望取得一些改进,但提高器件性能的真正关键将是基于材料的。由于高效量子级联激光器QCL的快速发展,在λ~4.6 ~ 4.8 μm范围内实现了室温连续运行的高功率DFB QCL[19,20]。设计并制备了一种简单的平面光栅,其光栅深度为120nm。计算得到的耦合系数为1.37cm−1,模态损失识别为0.4 cm−1,对于5 mm长腔的单模态工作是足够的。后刻面涂HR涂层,前刻面涂AR涂层。AR涂层不仅有助于提高斜度效率,而且有助于净化FP模式的高镜面损耗的激光光谱。宽11 ...
可测量。对于相干性受多纵模而非噪声限制的激光器,相干长度可能可以更准确地称为“相干周期”,因为高对比度区域将在相干长度的倍数处重复出现,尽管由于噪音和距离增加了一些退化。 因此,虽然法布里-珀罗(线性腔)激光器(如HeNe)的相干长度通常被认为是管长度,但可用的相干长度要短得多。在HeNe激光器中,通常只有几个(但不止一个)纵模。这些腔模必须满足驻波标准,该标准规定反射镜之间必须是整数个半波长。在频域中,这意味着两种模式之间的“距离”是∆nu = c/(2L),其中L是激光器的长度。模式之间的拍频引起时间相干性的周期性变化,周期为2L/c,即在光程差为n*2L(n为整数)的两个光束之间获得完全 ...
高单色性、高相干性。此后,激光技 术得到了飞速发展,其中一个重要方向就是向输出脉宽越来越窄的脉冲方向发展。到目前为止,脉冲持续时间已由纳秒(ns)、皮秒(ps)压缩至飞秒(fs),甚至至阿秒(as)级。故飞秒激光的脉冲持续时间远短于热平衡时间(10−12 s 数量级),所以在与物质作用时,飞秒激光注入的能量被集中在一个空间极小的范围内, 其能量几乎不会被传递到直接作用区以外,对作用区周围的热影响极小。由于聚焦激光的焦斑尺寸极小, 能量密度极高,能量的利用率亦大大提高。这使得被作用区域的温度在极短时间内升到极高,远超过材 料的液化和气化温度,促使物质发生高度电离,达到等离子态。同时,由于飞秒激光 ...
间需要很强的相干性,从而使光场显示与全息无法区分。再现accommodation的难度引起了视觉不适,因此不得不限制显示的景深。为了再现显示器平面之外的体素,光线需要被光学系统聚焦在那个点上。如果不能随意重新聚焦子像素,光场显示器只能从发射平面产生平面波前。如图3a所示,当光场显示器视图再现离发射平面太远的体素时,体素总是变得模糊。为了解决这个问题,研究人员开发了多平面光场显示器。因为发射平面可以通过光学元件重新聚焦并沿观察深度移动,因此可行。但是,这需要多路复用以在时间上或空间上生成不同的平面,从而增加了系统需要的带宽。还有一个不可忽视的点是,当有很多视区的时候,不同平面之间的遮挡很难控制。 ...
或 投递简历至: hr@auniontech.com