声光调制器的两种衍射类型以介质中的超声频率及声光作用长度为分类依据,声光调制产生的衍射现象可分为拉曼-奈斯(Raman-Nath)衍射和布拉格(Bragg)衍射两种类型。1,拉曼-奈斯衍射当超声频率低,光波的入射方向垂直于超声场的传播方向且声光互作用的长度较短时,声光介质相当于平面光栅,当有光波入射到介质内,光的衍射规律遵循普通相位光栅的衍射定律,就会产生拉曼-奈斯衍射。由于声波长λs 比光波长λ大的多,当光波平行通过介质时,由于不受声波波面的影响,所以介质折射率的变化只影响光波的相位,即光波通过介质折射率大的部分时,光波波阵面将延迟,通过介质折射率小的部分时,光波波阵面将超前,由此导致光波波 ...
克斯束通常由声光调制器(AOM)或电光调制器(EOM)进行调制。调制频率通常在MHz范围内。这有助于减少由光热膨胀产生的背景并提高图像采集速度。在本国产成人在线观看免费网站笔记中,泵浦光束是由AOM在2 MHz左右调制的。为了使泵浦和斯托克斯光束在时间上保持一致,一个电动的延迟用于调整任一或两个光路驱动器的光路长度。对于具有光谱聚焦的飞秒SRS,延迟级还用于微调泵浦和斯托克斯束之间的能量差。像大多数其他非线性光学显微镜一样,光束扫描方法通常用于CARS和SRS图像采集。在物镜之前放置一对振镜或振镜扫描头。在本例中,使用了一对振镜(GVS 102,Thorlabs)。物镜/聚光镜,探测器和数据采集在扫描头后,将光束 ...
TR设置使用声光调制器(AOM),但由于AOM的上升时间长得多,调制频率通常有限。EOM调制频率作为锁定检测的参考。在通过相同的物镜聚焦到样品之前,探针光束通过机械延迟线产生时间延迟。探测束通常在延迟阶段之前扩束,以减小长距离传输导致的发散。图1. 典型TDTR系统光学装置图时域热反射系统 探测方式:反射的探测光束由快速响应光电二极管探测器收集,它将光信号转换成电信号。然后使用锁相放大器从强背景噪声中提取信号。在早期TDTR系统中,探测器和锁相放大器之间插入一个电感,电阻为50Ω。原因是泵浦光束通常由方波函数调制(例如,使用康诺皮科国产黄色在线观看的350–160 EOM和25D型放大器),并且方波的所有 ...
(EOM)或声光调制器(AOM)进行调制。调制频率通常在兆赫兹的频段。这样可以有效的降低光热效应,提高图像采集的速度。在这个国产成人在线观看免费网站指南中,我们将使用AOM对泵浦光在2兆赫的频率进行调制。在光路中,一个电动延时台被用来准确的调节泵浦和斯托克斯光之间的延时。对于光谱对焦的SRS来说,这个延时台同时被用来微调两束光之间的能量差。像大多数非线性光学成像系统一样,SRS和CARS的成像大多使用的是光束扫描的方法。一堆振镜被放置在物镜前对光线进行扫描。在这个展示中,我们使用了一对Thorlabs的GVS 102振镜。物镜,聚光镜,探测器,数据采集当激光经过振镜扫描后,通过物镜在样品上形成一个焦点。相干拉曼成 ...
光调制器以及声光调制器可以实现基于频率调制光谱的PDH(Pound-Drever-Hall)、调制转移光谱技术(MTS, modulation transfer spectroscopy)等调制方法,但由于会增加光路的复杂性, 并且损失了一部分可观的光功率,这里不做详细的介绍。而塞曼 (Zeeman) 调制稳频不但对于激光器的锁定频率输出没有调制,并且光路也较为简单,实验效率较高。塞曼调制稳频简单来说是需要给 Rb 原子池施加调制,通过缠绕在原子池周围的线圈来调制磁场来改变 Rb 的原子能级,从而实现对激光器输出频率的调制。在磁场的作用下,原子磁子能级塞曼分裂,上、下能级发生移动。当磁场较弱时 ...
(EOM),声光调制器(AOM)和电吸收调制器。激光调制在各种场合国产成人在线观看免费网站非常广泛。随着调制频率的增加,在光通信领域可以传输更多的信息。激光雷达测量方面,激光调制相对于连续激光更加灵敏,而且对眼睛的伤害更低。当一些国产成人在线观看免费网站中不需要非常高的能量,例如在光谱学中,激光调制是一种很好的替代方法,不但可以减少费用,而且增加分辨率,减少对样品的损伤。其他类似的研究和实验,涉及到样品成像也能够得益于激光调制。调制类型可以分为模拟调制和数字调制,各自有不同的特点。模拟调制的输入信号是连续的,并且限定在一定的范围内,出射光的功率随着时间也是连续变化的。数字调制是一系列离散的值。有时候可能数字信号是一个方波,功率变化只 ...
ion)以及声光调制(AOM:Acousto-Optic Modulation)。其他外调制,包括一些机械的方式,例如斩波器,旋转盘等等。这篇文章主要聚焦于三种电学的调制技术。电光调制电光调制时建立在普克尔效应之上,当在非线性晶体上施加电压形成电场,晶体折射率会随着电场的改变而改变。光束经过晶体,相位随之发生改变。当一个相位调制器和马赫泽德干涉仪或者调制器相互组合,光束经过干涉仪被分成两路,其中一路中放置了扑克尔效应。当两路光束再次汇聚后相互相长或者相消,以此达到光强调制的效果。电光吸收调制电光吸收的方法时建立于Fraz-Keldysh和Stark效应,由于施加外部电场导致光的吸收,而且随着外 ...
光源。常使用声光调制器(AOM)的衍射效应对信号光进行移频,移频造成的频率差,是交流电流发生的重要因素,所以需要集中,这也就限制着激光器频宽,所以COTDR通常使用单频窄线宽激光器。从单模光纤中不同位置产生的信号光的偏振态并不相同,所以需要扰乱参考光的偏振态,并经过多次测量以获得信号光与参考光在不同偏振态匹配条件下的平均相干检测结果。上面是COTDR具体结构图,激光器发出的激光经耦合器分成两束,一束经过声光调制器调制为探测光脉冲,再经耦合器注入被测光纤。返回的背向瑞利散射光信号与参考光混合,二者产生中频信号由平衡探测器接收。平衡探测器输出带中频信息的电流信号,最后经放大,模数转换后,由数字信号 ...
压电陶瓷或者声光调制器等其他响应器件,进行频率补偿,最终实现将普通激光锁定在超稳光学腔上。关于PDH技术的理论细节可以在一些综述论文和学位论文中找到。为了实现PDH锁定,需要一些专用的和定制的电子仪器,包括信号发生器,混频器和低通滤波器。Moku:Lab的激光锁盒集成了大部分的PDH电子仪器,在提供高精度的激光稳频功能上是具有独一的,紧凑的,易于使用的仪器。图1:PDH稳频系统原理图二. 实验装置Moku:Lab的激光锁盒集成了波形发生器、混频器、低通滤波器和用于PDH锁定的双级联PID控制器。通过调节激光腔的长度,可以监测反射光的振幅,并在屏幕上实时显示PDH信号。用户只需轻轻一敲就可以将激 ...
H建立在快速声光调制器的基础上。通过X AOD/Y AOD串联在4f系统中实现空间光调制,用于3D RAMP显微镜,实现40kHz双光子激发体积的全息成形。使用3D-CASH,以40kHz的频率从神经元进行串行采样,3D位置可自由选择。通过使用覆盖细胞体及其预期位移场的尺寸优化的激发光模式瞄准每个神经元,消除运动伪影。从清醒小鼠视觉皮层中的GCaMP6f记录推断的尖峰率跟踪移动条刺激的相位,与层间神经元对相比,内部之间具有更高的尖峰相关性。3D-CASH提供了对3D微回路中体内神经元活动的毫秒相关结构的访问。图1、3DScope的原理图2、激发光的holographic patterning图 ...
或 投递简历至: hr@auniontech.com