片,半波片与四分之一波片等。利用这些器材,我们就可以着手开始验证其产生光子对的偏振纠缠性。图11 验证光路示意图图12 实际光路我们搭建了如图所示的光路,我们首先使用可见光源与功率计将准直器对准。然后更换为1550nm偏振光源与功率计,分步加入偏振片、半波片与四分之一波片并调整角度,zui后更换为光子源,单光子探测器与计数器,光子源的信号光与闲置光将分别经过光纤,通过四分之一波片、半波片与偏振片,zui后由探测器探测,由计数器进行符合。我们保持光路光路其他波片固定,通过转动其中一个半波片并固定,我们可以在计数器中看到符合计数产生了变化。随着半波片的旋转,符合计数也随之发生正弦变化。本次实验中, ...
一个可旋转的四分之一波片来补偿椭圆度,zui后进入汤姆逊偏振分光器。为了zui大限度地提高灵敏度,分离器设置在45◦的入射(未干扰)偏振。分路器提供两束正交偏振方向的光束(图1b),击中一对象限光电二极管。每一对相对的象限分别沿着样本的x轴和y轴的投影对齐。两束是相等的强度为未受干扰的45◦偏振的情况下,而任何样品诱导的偏振旋转导致相等但相反的强度(45◦是zui敏感的角度对小的偏振变化)。通过适当地组合八个光电二极管象限的输出,可以同时检测和分离三个正交的磁化分量,只要它们的采样几乎相等,这对于具有高数值孔径的物镜是正确的。如图1c所示,在两束入射方向相反的光束的激励下,纵向克尔对比改变符号 ...
偏振分束器和四分之一波片(1/4 Waveplate)进行分离。探测激光在延迟平台后为水平偏振方向,完全通过偏振分束器,到达样品前后经过四分之一波片,偏振方向由水平变为竖直,在返回至偏振分束器时被完全反射。③由于探测激光信号非常微弱,少量泵浦激光到达光电探测器会严重影响测量结果。因此,在光电探测器前放置蓝光滤光片(Blue Filter),对波长为532nm的泵浦光进行再次滤波,有效去除其对探测光的干扰。④反射出来的探测激光经过焦距为300 mm的平凸透镜聚焦在另一个光电探测器的光敏面上,该探测器与锁相放大器相连,用于采集实验信号。⑤另外,通过铝膜反射镜将光线反射至CCD相机,可以观察样品表面 ...
或 投递简历至: hr@auniontech.com