展示全部
MobileRam手持拉曼光谱仪
利散射相比,拉曼散射非常弱。 为了获得合理的信噪比,通常需要几秒钟的长积分时间。 对于常规光谱来说,这可能不是问题,但是对于光谱成像而言,可能需要几个小时才能获得一个单一的视野。为了增强信号,这些年来已经开发了几种不同的方法。基于等离激元的方法,例如表面增强拉曼光谱,进一步将检测极限降低到单分子水平。相反,纳米颗粒诱导的不均匀性使其难以成像。 对于成像科学家来说,更有前景的方法是增强非线性光学的相干拉曼散射方法:受激拉曼散射(SRS)和相干反斯托克斯拉曼散射(CARS)。相干拉曼效应最早是在1960年代发现的。在1990和2000年代末,由于超快锁模激光器的进步,谢尼(Sunney Xie)及 ...
通常,拉曼散射和远红外漫反射光谱被用于测试固体物质的晶格能的振动特性,可帮助我们从微观的角度来分析其微观特性,并且在固有属性和结构-性质规则方面提供更多的创新视角。拉曼光谱通过使用XperRam Compact(Nanobase)光谱仪在室温下进行测试,所用激发光源为633nm。NMS陶瓷晶体的拉曼散射光谱如图1所示,图1(a)所示样品的拉曼峰都很相似,基线都很平坦,并且振动峰都很尖锐。根据群论分析结果,空间群为P21/n的晶体应该有24个拉曼有源振动模式(12Ag+12Bg)。然而,在实际的拉曼峰中,只有12个峰被检测到,这是因为拉曼有源峰的叠加以及设备分辨率的影响。在100-270cm-1 ...
受激拉曼散射显微镜Moku:Lab 锁相放大器的使用拉曼现象由印度科学家C.V. 拉曼于1920 年代发现1, 2。如今,拉曼光谱已成为广泛使用的探知分子振动模式的方法3,4。与其他分析化学方法相比,光谱方法可以提供很高的空间分辨率,探测装置无需与样品相接触。分子振动光谱提供了相对较高的化学特异性,且不需要额外的标记。然而,自发拉曼现象是一个非常弱的散射现象。如果直接使用自发拉曼进行成像或者显微研究,一张图可能需要几小时的采集时间。因此,相干拉曼方法,如受激拉曼散射如今被广泛的国产成人在线观看免费网站于显微镜研究。在这个国产成人在线观看免费网站指南中,我们将讲述如何使用Moku:Lab的锁相放大器进行受激拉曼散射的信号探测。背景介绍 ...
时,由于发生拉曼散射,会散射产生分别比泵浦波长长和短的微弱散射光。SSPD可以检测这种单模光纤中出现的非常微弱的背向散射光信号。通过比较这种不同波长拉曼信号的强度比值,可以得出温度信息。结合泵浦光脉冲和低时间抖动SSPD以及TCSPC电路提供的定时信息,我们可以获得光纤不同长度位置的温度信息。7.飞行时间激光测距SSPD可以用来提升激光雷达(LIDAR)系统的量程和性能。SSPD还可能在更大范围的大气遥感国产成人在线观看免费网站中使用。 ...
发生改变,为拉曼散射,频率的变化对应的是物质的转动和振动光谱,所以收集拉曼散射可以得到物质的结构,从而完成对物质的指认。而拉曼散射根据散射光频率相较于入射光频率的变化,又分为斯托克斯线,与反斯托克斯线,斯托克斯线与反斯托克斯线位置相较于入射光频率完全对称,只在信号强度上有很大差异。如下图,假设频率为υ_0的入射光经过试样散射之后,散射光之中包含频率为υ_0的瑞利散射与频率为的υ_0±∆υ拉曼散射,其中频率为υ_0-∆υ是斯托克斯线,频率为υ_0+∆υ是反斯托克斯线。常用拉曼探测技术原理以及优缺点:FT-Raman:原理:傅里叶变换技术采集信号,使用1064nm激光光源优点:消除荧光,精度高缺点 ...
灭原本较弱的拉曼散射;又因为拉曼散射强度与激发波长的四次方成反比,也就是说波长越短散射信号越强,因此对于光谱整体质量作一个综合的考量离不开激发波长的选择.02 拉曼激光器的种类紫外:244nm,257nm,325nm,364nm可见:457 nm,488 nm,514 nm, 532 nm,633 nm,660 nm近红外:785 nm,830 nm,980 nm,1064 nm03 紫外拉曼优缺点优点:①紫外激发能量高,散射信号强,灵敏度高.②避免荧光干扰:荧光信号和拉曼信号不在一个区域,相隔较远,有利于观察拉曼信号.缺点:①紫外激发能量高,易损伤样品.②紫外激光器体型大,占空间,成本高,技 ...
光谱仪是根据拉曼散射效应设计的仪器.当一束频率为v0的单色光照射到样品上后,分子可以使入射光发生散射。大部分光只是改变方向不改变频率发生散射,这种散射称为瑞利散射;还有一部分光不仅改变了传播方向,而且散射光的频率也改变了,不同于激发光的频率,称为拉曼散射。拉曼散射中频率减少的称为斯托克斯散射,频率增加的散射称为反斯托克斯散射,斯托克斯散射通常要比反斯托克斯散射强得多,所以拉曼光谱仪通常测定的是斯托克斯散射,也统称为拉曼散射。拉曼光谱仪具体原理结合光谱仪各部件加以说明。二、光谱仪各部件1、狭缝狭缝是一条宽度可调,狭窄细长的缝孔.狭缝宽度影响光谱分辨率,狭缝越窄,分辨率越高.狭缝经由入射光照射,是 ...
光谱学技术。拉曼散射为非弹性散射,通常用来激发拉曼光谱的激光范围为可见光,近红外或者近紫外光范围附近,激光于系统声子进行相互作用导致最后光子能量增加或者减少,而由这些能量的变化可得知声子模式。下图展示了显微拉曼光谱原理光路以及使用的相关器件:其中用来进行拉曼光谱实验的激光器我们称之为拉曼激光器,拉曼激光器区别于普通激光器的一个最大不同就是激光器的线宽,就是激光器的单色性,一般来说,普通激光器的线宽在0.1纳米到几个纳米之间,而拉曼激光器最低要求激光器线宽不能超过0.001纳米,最好是使用单纵模激光器进行实验。法国Oxxius国产黄色在线观看单纵模拉曼激光器因为拉曼信号相对激光强度差了6-8个数量级,所以一 ...
气来观察受激拉曼散射,结果表明拉曼阈值降低到石英光纤拉曼阈值的百分之一左右。因此,不同的填充物可以来增强不同的非线性效应。图4、六边形结构空心光纤图5、六边形空芯光子晶体光纤损耗谱三、空心光纤国产成人在线观看免费网站空心光纤在医疗上的国产成人在线观看免费网站主要是感应和诊断治疗,空心光纤的最大优点是可以传输普通固体芯无法传输的波长。例如,传统石英基光纤由于其材料吸收,截止波长约在2.1微米,但Er:YAG激光波长达2.94微米、CO2激光波长达10.6微米,这比短波长的石英光纤具有更大的临床诊疗优势。通常,利用长波长的高水吸收峰,阻止激光能量穿透作用组织以外,达到精确消融或切割的目的,同时CO2激光良好的止血性能也有助于外科医生的操 ...
金属胶体纳米颗粒由于稳定性高、大小可调、光学性能独特和生物相容性被广泛用于超灵敏检测探针,尤其在SERS中,分子的拉曼信号增加108。基于SERS的实验有单分子水平灵敏度、分子特异性和减少光漂白的优势。许多基于纳米颗粒的金属探针被用来检DNA,RNA,蛋白质,病原体,癌细胞和化学物质,然而很少有报道使用SERS探针直接检测病毒。本文报道了通过SERS抗体探针简便灵敏地检测流感病毒。通过免疫反应将流感A/CA/07/2009 (pH1N1)捕获到基底上,然后国产成人在线观看免费网站SERS抗体探针。在探针Ag增强下,通过SERS检测到了低浓度的pH1N1,并且将pH1N1和其他类型流感病毒区分开来。这个方法有明显的 ...
或 投递简历至: hr@auniontech.com