展示全部
住整个米氏和瑞利散射范围粒子的势阱。它是由高度汇聚的单束激光形成的,可弹性地捕获从几nm 到几十μm 的生物或其他大分子微粒 (球) 、细胞器等,并在基本不影响周围环境的情况下对捕获物进行亚接触性、无损活体操作。光镊自1986 年发明以来,以其非接触、低损伤等优点,在激光冷却、胶体化学、分子生物学等领域的实验研究中发挥了极其重要的作用。随着光镊技术国产成人在线观看免费网站领域的不断扩大,为适应更多的研究需求,光镊技术本身也在向实时可控的复杂光阱方面不断地改进。目前研究人员经过不断地改进实验方法以及控制样品的布朗运动,可以在秒的时间尺度上实现埃量级精度的位移测量。同时可以捕获并观察到最小达25 nm 的粒子,并有望 ...
频率一样,为瑞利散射;2:非弹性散射,散射光频率发生改变,为拉曼散射,频率的变化对应的是物质的转动和振动光谱,所以收集拉曼散射可以得到物质的结构,从而完成对物质的指认。而拉曼散射根据散射光频率相较于入射光频率的变化,又分为斯托克斯线,与反斯托克斯线,斯托克斯线与反斯托克斯线位置相较于入射光频率完全对称,只在信号强度上有很大差异。如下图,假设频率为υ_0的入射光经过试样散射之后,散射光之中包含频率为υ_0的瑞利散射与频率为的υ_0±∆υ拉曼散射,其中频率为υ_0-∆υ是斯托克斯线,频率为υ_0+∆υ是反斯托克斯线。常用拉曼探测技术原理以及优缺点:FT-Raman:原理:傅里叶变换技术采集信号,使 ...
这种散射称为瑞利散射;还有一部分光不仅改变了传播方向,而且散射光的频率也改变了,不同于激发光的频率,称为拉曼散射。拉曼散射中频率减少的称为斯托克斯散射,频率增加的散射称为反斯托克斯散射,斯托克斯散射通常要比反斯托克斯散射强得多,所以拉曼光谱仪通常测定的是斯托克斯散射,也统称为拉曼散射。拉曼光谱仪具体原理结合光谱仪各部件加以说明。二、光谱仪各部件1、狭缝狭缝是一条宽度可调,狭窄细长的缝孔.狭缝宽度影响光谱分辨率,狭缝越窄,分辨率越高.狭缝经由入射光照射,是光谱仪成像的物点.另外狭缝可以限制某些方向的光进入光谱仪,减少杂散光。2、准直元件准直元件一般是准直镜,入射狭缝位于准直镜的焦平面上,从狭缝进 ...
占主导地位的瑞利散射相比,拉曼散射非常弱。 为了获得合理的信噪比,通常需要几秒钟的长积分时间。 对于常规光谱来说,这可能不是问题,但是对于光谱成像而言,可能需要几个小时才能获得一个单一的视野。为了增强信号,这些年来已经开发了几种不同的方法。基于等离激元的方法,例如表面增强拉曼光谱,进一步将检测极限降低到单分子水平。相反,纳米颗粒诱导的不均匀性使其难以成像。 对于成像科学家来说,更有前景的方法是增强非线性光学的相干拉曼散射方法:受激拉曼散射(SRS)和相干反斯托克斯拉曼散射(CARS)。相干拉曼效应最早是在1960年代发现的。在1990和2000年代末,由于超快锁模激光器的进步,谢尼(Sunne ...
中,聚苯乙烯瑞利散射较严重,损耗较大;相比较,纤芯为聚甲基丙烯甲酯材料,则损耗较低。塑料光纤的主要特性与优缺点塑料光纤在性能等方面主要具有如下突出的优点。(1)重量轻。光学塑料的比重1 g/cm3 左右(比重范围一般在 0.83~1.50 g/cm3),为玻璃比重的1/2-1/3。(2)柔软、韧性好,具有良好的机械性能。直径为1 mm的塑料光纤,按曲率半径为6 mm做180°反复曲数百次,对光线毫无损害;即直径达到2 mm,仍可以自由弯曲而不断裂;且抗冲击强度好。(3)不可见光波段的透过性能好。塑料光纤在可见光和近红外波段的透过性接近光学玻璃。但在紫外和远红外波段其透过率大于50%,优于玻璃光 ...
曼散射相对于瑞利散射,是一个较弱的散射现象。通常,一个光谱测量需要进行几秒钟的信号平均以获得足够的信噪比。对于光谱测量,这本身不是一个问题。然而,对于光谱成像而言,这意味着一张图可能需要几个小时的信号平均,严重限制了高通量样品检测的能力。因此,多种不同的方法相继被用来提高拉曼信号的强度。比如使表面增强拉曼可以使得拉曼光谱的探测极限到达单分子层级8。然而,这些测量所引入的纳米颗粒很难均匀的分布到样品中,因此难以做到定量分析。对于成像科学来说,非线性光学效应产生的增强效果是一个更加适合的方法。比如受激拉曼散射(SRS)效应,以及相干反斯托克拉曼散射(CARS)效应。图1:自发拉曼,SRS以及CAR ...
相同的成分(瑞利散射),而且还存在有少量的波长改变了的散射光(斯托克斯和反斯托克斯拉曼散射),拉曼散射光强度大约是总散射光强度的10-7 。正是这些波长改变了的拉曼散射光能够给我们提供有关样品的化学成分和结构信息.来自分子的散射光有几种成分:瑞利散射、斯托克斯和反斯托克斯拉曼散射.在分子体系中,这些频率主要是位于分子转动、振动以及电子能级跃迁相关的范围内。散射光沿着所有方向辐射,伴随波长的变化,其偏振方向也有变化。1. 散射光频率不发生改变的散射过程称为瑞利散射,就是Lord Rayleigh用来解释天空之所以呈现为蓝色的那种过程。2. 散射光频率(波长)发生改变的散射过程称为拉曼散射,拉曼光 ...
不断产生背向瑞利散射光,回传的背向瑞利散射光带着使它产生散射的信号通过耦合器到光电检测器中。由于激光器发射的就是脉冲光,所以可以根据时间得到背向散射发生距光源的时间差,从而确定空间位置。OTDR得到的瑞利散射功率为一条指数衰减的曲线,该曲线表示出了光纤沿线的损耗情况。当脉冲光在光纤传播过程中遇到裂纹、断点、接头、弯曲等情况,脉冲光会产生一个突变的反射或衰减。典型的OTDR探测曲线如下图所示:二、OTDR系统及性能指标OTDR系统主要由脉冲发生器、光源、光电探测器、信号处理系统等组成。基本构架如下:OTDR直接探测背向瑞利散射光的功率,光源输出功率越高,背向散射信号越强,探测距离越远。OTDR通 ...
时产生的背向瑞利散射,参考光可取自激光光源。常使用声光调制器(AOM)的衍射效应对信号光进行移频,移频造成的频率差,是交流电流发生的重要因素,所以需要集中,这也就限制着激光器频宽,所以COTDR通常使用单频窄线宽激光器。从单模光纤中不同位置产生的信号光的偏振态并不相同,所以需要扰乱参考光的偏振态,并经过多次测量以获得信号光与参考光在不同偏振态匹配条件下的平均相干检测结果。上面是COTDR具体结构图,激光器发出的激光经耦合器分成两束,一束经过声光调制器调制为探测光脉冲,再经耦合器注入被测光纤。返回的背向瑞利散射光信号与参考光混合,二者产生中频信号由平衡探测器接收。平衡探测器输出带中频信息的电流信 ...
器将90%的瑞利散射反射回激光器,同时传输所有拉曼位移信号。(与宽带50/50分束器相比,几乎提高4倍拉曼信号)。两个超窄带VHG陷波器,每个光密度为>4.0,然后在传输拉曼信号时进一步衰减收集到的瑞利散射光,估计系统传输效率为>80%。滤波后的信号聚焦在25μm芯径、0.1NA阶变折射率光纤上,连接到高分辨率、高通量的单级光谱仪成像光谱仪。它配备了1200线/毫米光栅和1340x400成像阵列,20 × 20 μm像素大小和98%的峰值量子效率,以确保最大的信号采集和1.25波数分辨率;适合5-200波数频率范围的分析。下图4为上述系统测得的低波数拉曼光谱。图4您可以通过我们昊量 ...
或 投递简历至: hr@auniontech.com