型SLM存在衍射效率低的问题。这是由于其有限的像素填充因子、背板架构和其它因素,使得多达20%的入射光可能不会被衍射,从而产生零级衍射级,这通常会干扰控制的衍射级并显著降低观察到的图像质量。导致目前计算生成全息的图像质量还不如传统的显示技术。在光学中,同轴和离轴滤波方案是两种最常用的技术,可最大限度地减少零级衍射。同轴滤波在物理上阻挡了傅立叶平面上的未衍射光束,这不可避免地也阻挡了一些低频成分的衍射光。此外,当复用三种颜色时,这种遮挡操作会更具挑战性。离轴方法会导致视场减小(使用第一级衍射级的一半)或效率降低(使用更高的衍射级),而这两个因素对于近眼显示来说都是至关重要的。此外,还有通过对校正 ...
通过数值模拟衍射和干涉来实现具有高空间-角度分辨率的3D投影。全息将动态光场编码为相位和振幅变化的干涉图案,即全息图。通过选择照明光束,全息图将入射光衍射成原始光场的准确再现。重建的3D场景呈现准确的单目和双目深度线索(depth cues),这是传统的显示手段难以同时实现的。然而,高效、实时地创建逼真的计算机生成全息图(CGH)仍然是计算物理学中尚未解决的挑战。其主要挑战是对连续3D空间中的每个目标点执行菲涅耳衍射模拟所需的巨大算力要求。有效的菲涅耳衍射模拟极具挑战性,目前通过用物理精度换取计算速度来解决。基于预先计算的元素条纹、多层深度离散化、全息立体图、波前记录平面(或者中间光线采样平面 ...
,以比传统的衍射光学元件(DOE)更大的设计自由度和空间带宽积来调制入射光。此外,meta-optical散射体丰富的模态特性使得其比DOE具有更多的能力,如偏振、频率、角度多路复用等。meta-optics可以使用广泛可用的集成电路代工技术制造(如深紫外光刻(DUV)),而无需基于聚合物的DOE或二元光学器件中使用的多个蚀刻步骤、金刚石车削或灰度光刻(grayscale lithography)。尽管meta-optics优势很大,且在用于成像、偏振控制、全息的平面光学器件中得到国产成人在线观看免费网站,但是当前其缺陷也很明显。受限于meta-optics赋予的不连续的相位分布,产生了严重的、波长相关的像差,使 ...
整激光功率,衍射光栅G和透镜L3(f=4mm)将泵浦光和斯托克斯光耦合进两个不同的纤芯。样品信号由双芯双包层光纤(DCDC-fiber)传导,经二向色镜DC2偏折引入光电倍增管(PMT),带通滤光片F2选择需要的非线性信号(CARS/SHG/TPEF),透镜L2将光信号聚焦在PMT上。(2) 双芯双包层光纤。如图2 ,纤芯1直径4.8um,截止波长836nm;纤芯2直径6.3um,截止波长970nm。分别用于引导795nm泵浦光和1030nm斯托克斯光,内包层掺氟,直径60um。125um直径纯石英双包层,被直径为230um的掺氟聚合物包裹。包层用于信号采集。(3) 内窥镜探头。DCDC光纤由 ...
。优化完成的衍射元件用光刻技术加工,折射透镜用金刚石车削加工。经实验验证,实际效果与模拟效果相符。原理解析:(1) 成像模型。首先以近轴光学的方式,不考虑离轴像差,用平面波看作为一个无穷远处的点光源,其经过光学元件的相位调制后,用波动光学理论在自由空间传播到图像传感器表面得到的光强作为点扩散函数。只考虑点扩散函数为平移不变的情况,这样可以简化问题。图像源与点扩散函数卷积,在图像传感器每个像素上随波长和时间积分,加上传感器的读取噪声,zui终成像。图像重建可以看作为求解一个Tikhonov正则化zui小二乘问题。(2) 端到端优化框架。用随机梯度法优化有一个光学元件的计算相机。将成像模型的每一步 ...
为神经网络到衍射传播到神经网络。如图1所示,第一个神经网络将入射到SLM上的复数场分解为实数域和虚数域两个通道,网络输出为SLM平面将出射的复数场(以实数和虚数两个通道输出),从而校正SLM的非线性、空间变化的光源强度、光学像差等其它不良因素。SLM平面经调校的出射场使用角谱法传播到一个或多个目标平面。在获得目标平面的光场强度之前,先将角谱法所得复数场再次拆分为实数和虚数部分输入第二个神经网络处理,其输出也为实数和虚数部分的双通道输出。这里所用网络为UNet架构。(1)传统全息波传播使用角谱传播来描述。求解目标图像到SLM上相位分布的逆问题可以归结为:s是固定或可学习的放缩参数,fASM代表角 ...
光学元件发生衍射作用(此时反射回的入射角满足布喇格条件),全息光学元件开始展现出反射镜的功能,使得光反射回后续光路(经典pancake的原理见附录)。(3) 全息光学元件制作。在AR系统里,数字图像光束和自然场景光束的合束是关键所在。最简单的合束器是一个50:50的分光片,但是对于头戴式、眼睛式的国产成人在线观看免费网站来说太笨重了。全息光学元件是一个轻薄的平板,其记录的是体全息图,只对满足布喇格条件(对入射角和波长明确要求)的光形成明亮的衍射再现像,对不满足此条件的光则相当于一个透射平板。全息光学元件可以制作成具有各种光学功能的元件,如微透镜阵列功能,反射镜功能等。微透镜功能的记录和使用见图2。本文将全息光学元 ...
度信息,利用衍射光栅获得物体的光谱信息。如图1,以一个视角为例,道威棱镜将输入视角图像旋转 角度(是道威棱镜自身的旋转角),旋转后的视角(perspective)图像由柱透镜再次成像,所得图像本质上是旋转物体图像与柱透镜的线扩散函数的卷积。在柱透镜后焦平面上放置一个狭缝,沿水平轴对图像进行采样,所得一维信号是物体在 角度的"投影",这类似于传统X射线CT中的投影测量(柱透镜和狭缝的组合,通过丢弃大部分光线将二维图像压缩成一维)。图像形成可以描述为:其中g是矢量化的二维视角图像。是旋转算子,表示道威棱镜在角度处的函数的。T表示在一维狭缝处的信号积分,而是一维狭缝采样的信号。通 ...
零级光,一级衍射空间光调制器零级光产生的原因?要想了解SLM零级光产生的原因,我们需要先了解下空间光调制器的结构构成。如下图所示,LC-SLM光学头主要由:保护玻璃,透明电极,液晶层,像素电极层(Wafer)构成。1) 保护玻璃的透过率窗口片保护玻璃的透过率在相应的工作波段(400-800nm,500-1200nm,850-1650nm)内通常在98.5-99.5%范围内,因此有少量的光被直接反射回去。2)透明电极的透过率透明电极的透过率一般都在99%以上,该部分造成的零级光基本可以忽略。3)空间光调制器填充率像素电极层(Wafer)由一个个的独立像元构成,从而SLM可以实现针对单个像元的独立 ...
发效率,保持衍射极限焦斑,即该焦斑在时间上是傅里叶限制(脉宽的下限)的。正如球差会在空间上扩大聚焦体积并降低激发效率一样,扩束镜、扫描光学系统和显微镜物镜中的色散会延长脉冲持续时间,并降低脉冲质量。有多种策略可用于对这些光学器件的色散进行预补偿,以确保傅里叶变换极限或接近傅里叶限制的聚焦脉冲。值得注意的是,应考虑补偿方案本身的效率,以确保最终图像中有可实现的增益。例如,如果我们假设一个简单的方波脉冲形状,平均检测到的二阶信号可以估计为: N:脉冲重复频率 E:脉冲能量 :脉冲持续时间 A:面积 。在这种情况下,我们研究二阶非线性,例如 TPEF 或 SHG。值得注意的是,我们看到检测到的 ...
或 投递简历至: hr@auniontech.com