垂直方向上的空间分辨率分别为 1.58μm 和4 62μm。该系统与光谱椭偏之间的平均厚度差小于3nm,尽管包含大量的数据点,测量结果与标准值的偏差小于2.5nm。通过与磁光调制、时间相移和双反射等技术的结合,光谱椭偏技术提高了测量速度和准确性。通过与Muller矩阵的结合,光谱椭偏技术不再受光学分辨率极限的限制,提高了测量的准确性,可以获得更丰富的信息。2019年华中科技大学发明了基于液晶调相的垂直物镜式Muller矩阵成像椭偏仪,该仪器所用系统改变了之前普通倾斜镜面成像的结构,根本上避免了焦深小、视场窄的问题,可实现高分辨率、宽视场测量,可用于对纳米薄膜几何参数的测量。2018年韩国朝鲜大 ...
时提高测量的空间分辨率,以便研究单个磁点的动力学。精确的时间和空间分辨率的结合是一项重要的技术挑战。它允许探索用于存储和处理信息的磁性介质中的磁性位元的基本特性和zui终性能。为了实现这些目标,人们开发了一种新的实验装置,该装置基于飞秒时间分辨磁光克尔效应,具有衍射有限的空间分辨率。研究了具有垂直各向异性的CoPt3磁点的磁化动力学。仪器使人们能够在共聚焦显微镜几何结构中测量时间分辨克尔磁光信号,空间精度为300纳米。在中心波长为790nm的Ti:蓝宝石再生放大器上,以5KHz的重复率提供持续时间为150fs的激光脉冲。部分光束用作泵浦光。光束的另一部分用于在1.5 mm厚的硼酸钡晶体中通过二 ...
来测量具有高空间分辨率的磁化动力学。在时间方面,用飞秒光脉冲进行磁光学似乎是研究铁磁材料的超快退磁、磁化进动和磁化切换等物理过程的理想方法。zui终,zui短的可测量事件是由激光脉冲决定的。例如,使用来自钛:蓝宝石振荡器的20 fs脉冲,已经证明退磁过程发生在电子的热化时间内,即在CoPt3铁磁薄膜的情况下,60 fs在空间方面,根据所需的分辨率,使用了各种方法,包括扫描电子显微镜与极化分析,磁力显微镜,光电电子显微镜,和扫描近场磁光克尔显微镜。因此理想情况下,可以结合时间和空间分辨率来研究单个纳米结构的磁化动力学。图1飞秒时间分辨光学克尔显微镜如图1所示。泵浦和探针激光脉冲由钛蓝宝石再生放大 ...
相机在速度、空间分辨率、坚固性、连接性和高成本方面的性能不足的限制。zui近的发展提高了高光谱相机的速度和分辨率,而它们的实施成本现在符合商业解决方案的投资回报率标准。此外,现在还提供用于实时处理高光谱相机产生的大量数据的算法和解决方案。对于在线分选国产成人在线观看免费网站,线扫描高光谱相机是唯yi实用且正常工作的解决方案,因为它只需一次扫描即可同时精确地从生产线中的每个像素捕获整个材料流的整个光谱数据。线扫描(推扫式)高光谱热像仪可以安装在现有和新的分拣线上,具有适当的照明和实时数据处理解决方案,就像任何线阵扫描热像仪一样。逐个像素的材料识别结果可通过商业机器视觉系统的标准接口获得。然后,结果可用于控制空气喷嘴 ...
在不同水平的空间分辨率上非侵入性地描述活体生物的形态特征。光对活体组织的穿透仅限于几毫米,zui大的穿透发生在波长为近红外时(650-990nm)。如果对于距离表面更远的区域感兴趣,则必须通过内窥镜传输以及接收光。Lumencor的固态照明器是光源的理想之选,可满足这些和其他技术规范的活体成像国产成人在线观看免费网站。常用国产欧美在线型号SPECTRA、SPECTRA X光遗传学 Optogenetics光遗传学技术可以提供有关神经网络功能复杂性的空间和时间分辨率数据,同时避免了使用微电极进行侵入性的检查。光遗传学中的“光”指的是将光转换为感兴趣细胞中的电活动。而“遗传学”是指转换-光激活离子通道蛋白的转基因表达。用于光 ...
情况下实现高空间分辨率。计算机群集选项支持快速扫描和三维重建,在大多数情况下,该功能需要使用多台 电脑并行重建扫描数据集的时间少于扫描持续时间。横截面图像以高达 8k x 8k 像素的各种格式生成。此款相机被选中 - 在面对面测试中击败了其他X射线相机竞争对手在一场面对面的比赛中,微型CT扫描仪制造商SkyScan(现为布鲁克)选择了我们的xiRAY11相机,而不是竞争的X射线相机,用于其下一代11万像素微型CT扫描仪。这几乎是超级科学用相机微型计算机断层扫描或“micro-CT”是指类似于医院CT(或“CAT”)扫描使用的3D X射线成像系统,但规模要小得多,分辨率大大提高。Micro-CT ...
制了可实现的空间分辨率和测量磁通密度矢量的角度精度。此外,连接霍尔装置的导线中的电磁感应也限制了这种霍尔探头的有用带宽。此外,平面霍尔效应通常会产生额外的误差。在基于量子阱的霍尔板中,平面霍尔效应很弱,但问题依然存在。为了解决这个问题,在一个点上检测三个方向的磁性。SENIS开发了一种划时代的“完全集成3轴磁传感器”,使之成为可能。这就是“完全集成的三轴磁传感器”。该传感器可以在所有情况下测量精确的3D矢量,例如永磁体的邻近磁场、小线圈产生的磁场和时间变化,这在过去是不可能的。图1.传统的霍尔片3轴探头(左)和SENIS完全集成3轴磁传感器(右)3轴磁性探头的配置传统的霍尔片3轴探头SENIS ...
nm范围内的空间分辨率,超出了宽视场荧光显微镜(~ 200nm)的限制。与共聚焦显微镜一样,需要空间受限的激发光,通常shou选激光光源。透射光学显微镜通常需要比荧光显微镜更低的光强,因此可以使用更小的被动冷却光源。多年来占主导地位的卤钨灯已经被固态显微镜光源所取代。很大程度上是相同的原因,固态显微镜光源在宽视场荧光显微镜也已经取代了汞弧灯。特别是,固态光源的光谱分布(色温)不随输出光强而变化,这是保持色彩一致性的一个重要优势。暗场显微镜利用空间滤波排除未散射的光,从而提供样品的散射光图像。在暗场(DF)的照明下,平坦的表面呈现暗色,而裂缝、孔隙和蚀刻边界等特征则会增强。因此暗场照明可以用于检 ...
nm范围内的空间分辨率,超出了宽视场荧光显微镜(~200nm)的限制。与共聚焦显微镜一样,需要空间受限的激发光,通常shou选激光光源。透射光学显微镜通常需要比荧光显微镜更低的光强,因此可以使用更小的被动冷却光源。多年来占主导地位的卤钨灯已经被固态显微镜光源所取代。很大程度上是相同的原因,固态显微镜光源在宽视场荧光显微镜也已经取代了汞弧灯。特别是,固态光源的光谱分布(色温)不随输出光强而变化,这是保持色彩一致性的一个重要优势。暗场显微镜利用空间滤波排除未散射的光,从而提供样品的散射光图像。在暗场(DF)的照明下,平坦的表面呈现暗色,而裂缝、孔隙和蚀刻边界等特征则会增强。因此暗场照明可以用于检测 ...
;2nm)和空间分辨率(~μm)。CIGS的典型PL研究是在局部激发下进行的,这导致电荷向较暗的区域扩散。全局照明产生的等电位减少了这种影响,并允许在更接近太阳能电池的实际工作模式下进行测量。图1显示了从高光谱数据中提取的P1和P2谱线周围的PL曲线。PL图显示了P1线的边缘附近的发射淬灭。进一步的研究表明,这种效应导致PL强度降低了约30%,而不是由于成分变化。这一观察结果为没有P1图案线感应的寄生电路径的互连设计带来了新的见解。这项工作展示了高光谱成像如何成为识别损耗和提高CIGS模块效率的有用工具。图1.P1线边缘内的异常PL观测。(a)P1和P2消融线的光学显微照片(顶部)以及从在同一 ...
或 投递简历至: hr@auniontech.com