展示全部
射的方式回到基态,其余位于激发光斑中心的被激发电子则不受损耗光的影响,继续以自发荧光的方式回到基态。由于在受激发射过程中所发出的荧光和自发荧光的波长及传播方向均不同,因此真正被探测器所接受到的光子均是由位于激发光斑中心部分的荧光样品通过自发荧光方式产生的。由此,有效荧光的发光面积得以减小,从而提高了系统的分辨率。STED显微术能实现超分辨的另一个关键在于受激发射与自发荧光相互竞争中的非线性效应。当损耗光照射在激发光斑的边缘位置使得该处样品中的电子发生受激发射作用时,部分电子不可避免地仍然会以自发荧光的方式回到基态。然而当损耗光的强度超过某一阈值之后,受激发射过程将出现饱和,此时以受激发射方式回 ...
从激发态回到基态,缓慢放出较长波长的光,放出的这种光就叫荧光.如果把荧光的能量--波长关系图作出来,那么这个关系图就是荧光光谱.电子从激发态回到基态经历的时间即为荧光寿命.为了评估异质结中载流子的分离和传输特性,可对异质结进行荧光寿命测试.上图红蓝黑色曲线分别对应WS2,ReS2&WS2界面,ReS2的荧光寿命.可以看到ReS2的荧光寿命几乎没有信号,由于ReS2区域的寿命比WS2和界面区域的信号弱得多,因此在这种泵浦探测波长下,无法从ReS2到WS2传输光生载流子.所以从WS2到ReS2的光生载流子的时间动力学可直接评估WS2&ReS2异质结构的质量.如上图的插图所示,蓝色曲 ...
子吸收能量从基态跃迁到某个激发态,再以辐射跃迁的方式发出荧光回到基态。激发停止之后,分子激发出的荧光强度降到激发最大强度时的1/e所需的时间被称为荧光寿命,它表示粒子在激发态存在的平均时间,一般被称为激发态的荧光寿命。荧光寿命仅仅与荧光物质自身的结构和其所处的微环境的极性和粘度等条件有关,而与激发光强度、荧光团浓度无关,因此通常来说是绝对的。通过测定荧光寿命,我们可以直接了解所研究的体系所发生的变化,了解体系中许多复杂的分子间作用过程。时间相关单光子计数法(TCSPC)是目前测量荧光寿命的主要技术,其工作原理如下图所示:使用一个窄脉冲激光激发样品,然后检测样品发出的第一个荧光光子到达光信号接收 ...
子从低能级的基态E1激发到高能级E3上。Er3+在高能级上的寿命很短,很快即以无辐射跃迁的形式衰减到亚稳态能级E2 上。由于Er3+ 在能级E2 上寿命较长,在其上的粒子数聚集越来越多,从而在能级E2和E1之间形成粒子数的反转分布。这样,当具有1550 nm波长的光信号λEr通过这段掺铒光纤时,处于亚稳态能级的粒子即以受激辐射的形式跃迁到基态,并产生和入射光信号光(1550 nm)完全一样的光子,从而大大增加了信号光中的光子数量,也即实现了信号光在掺铒光纤中输出时不断被放大的功能。因此,利用掺铒光纤即可制成掺铒光纤放大器EDFA。掺铒光纤纤芯中铒的掺杂浓度取决于光纤放大器的设计要求,通常掺杂浓 ...
成的分子向其基态跃迁时发射所产生的激光,通常都在紫外波段。KrF Laser(氟化氪激光器)248nmXeCl Laser(氯化氙准分子激光)308nmXeF Laser(氟化氙准分子激光器)351nmHeCd Laser(氦镉激光器325nm, 441.6nm是指工作物质是气体的一种激光器,区别于准分子激光器,气体激光器是由原子能级跃迁产生的激光器,主要激励方式有电激励,光激励,气动激励等,气体激光器一般具有非常好的光束质量和相干性。N2 Laser(氮分子激光器,Nitrogen laser)337.1nm, 427nmAr+ Laser(氩离子激光器)488nm, 514.5nm, 35 ...
同一个粒子从基态通过连续多光子吸收到达能量较高的激发态。首先,发光中心处于基态G上的离子吸收一个能量为φ1的光子,跃迁至中间亚稳态E1能级,若光子的振动能量恰好与E1能级及更高激发态能级E2的能量间隔匹配,那么E1能级上的该离子通过吸收光子能量而跃迁至E2能级,从而形成双光子吸收,只要高能级上粒子数量够多,形成粒子数反转,那么就可以实现较高频率的激光发射,出现上转换发光。b 能量传递过程ETU能量传递是指通过非辐射过程将两个能量相近的激发态离子A、B耦合,其中A把能量转移给B回到基态,B接受能量而跃迁到更高的能态,从而使B能够从更高的能级发射。c 光子雪崩过程PA光子雪崩过程是激发态吸收和能量 ...
生,当原子由基态(低能级)向激发态(高能级)跃迁时,需要从外界吸收一个光子;而当原子由激发态向基态跃迁时,则需要向外界释放一个光子。一个光子的能量:当我们用一个入射光子掠过原子时,就有一定几率使该原子由激发态向基态跃迁,从而释放出一个光子,最终,我们将得到两个光子(入射光子和受激辐射所产生的光子)。并且,原子受激辐射所产生的光子与原入射光的光子是性质全同的,即能量(频率)、偏振、相位都相同。这就是受激辐射的光放大现象,也是激光产生的底层机制。那么,只要我们让足够多的原子受激辐射(从激发态向基态跃迁),不就可以将原入射光放大,从而产生激光了么?虽然原理上是这样,但要产生激光却并没有那么简单,因为 ...
个纳秒内返回基态的概率为50%,在下一纳秒的观察中,又损失了 50%,依此类推,由于光的强度是由在任意时间段内发射的光子数量决定的,因此它与受激分子的存在数量成正比。您可以通过我们的官方网站了解更多的国产欧美在线信息,或直接来电咨询4006-888-532。 ...
要布居在振动基态(参见上图所示)4. 分子中少量电子布居在较高的振动能级上,因此散射光子的能量可以大于入射光子,(获得能量,波长蓝移)这就是强度相对弱很多的反斯托克斯拉曼散射.5. 入射光子和样品分子相互作用,光子能量的改变量(得到或者失去能量)取决于每个化学键(振动)的特性。并非所有的振动都能在拉曼光谱上反映出来,这取决于分子的对称性。但是可以获得足够的信息,用来对分子结构进行相当精确的表征。因此,C-H键对应的能量改变不同于 C-O对应的能量改变,也不同于金属和氧之间成键的能量改变。通过测量散射光中这些不同波长成分,可以探测到与这些不同波长相对应的不同的键和振动.拉曼光谱能够探测材料的化学 ...
对于频率 (基态原子某一超精细跃迁共振频率)的泵浦光,可以将具有同样速度的基态原子几乎全部都激发到激发态上(或其他基态上),使吸收达到饱和。这时对于探测光,没有对于的原子来共振吸收,预期的吸收不存在,弱光束可以几乎无损的通过原子蒸气。只有速度为或者方向与光束垂直的原子即对光没有多普勒效应的原子会同时和两束光共振,引发饱和吸收现象。通过光电探测器接收后,呈现在示波器上的功率曲线则为吸收峰的状态。铷原子D1线的饱和吸收光谱此外在两个超精细跃迁线的中间,也存在交叉共振吸收峰,其产生的原理同样是多普勒效应。若原子以速度v运动,方向与泵浦光相反,泵浦光与探测光频率均为,由于多普勒效应,该原子“感受”到的 ...
或 投递简历至: hr@auniontech.com