首頁  技術文章  橢偏儀在位表征電化學沉積的係統搭建(十一)- 工作電極的製備與橢偏儀在位監控

橢偏儀在位表征電化學沉積的係統搭建(十一)- 工作電極的製備與橢偏儀在位監控

發布時間:2024-03-04 15:08:21 瀏覽量:1628 作者:Alex

摘要

本文主要介紹了實驗中所用的工作電極為(wei) 在Si(100)上磁控濺射100-200nm厚的Au,其製備流程以及對實驗用到的橢偏儀(yi) 及在位監控實驗過程進行介紹。

正文


橢偏儀(yi) 在位表征電化學沉積的係統搭建(十一)- 工作電極的製備與(yu) 橢偏儀(yi) 在位監控


2.1工作電極的製備


實驗中所用的工作電極為(wei) 在Si(100)上磁控濺射100-200nm厚的Au,其製備流程如下:


(1)清洗

由於(yu) 在生產(chan) 保存與(yu) 運輸的過程中會(hui) 使得矽片上殘留無機、有機和其他灰塵顆粒汙物,其對矽上的鍍膜有著較大影響,故而鍍膜之前需要對矽片進行清洗。清洗步驟:1.首先在丙酮中用超聲清洗儀(yi) 超聲5-10分鍾;2.然後用去離子水超聲同樣的時間;3.接著在酒精中超聲清洗;4.zui後再用去離子水超聲清洗。在完成以上步驟去除矽片表麵的殘留汙染物後,將其置於(yu) 鼓風幹燥箱幹燥即可。


(2)磁控濺射

由於(yu) 金的晶格常數和矽的晶格常數存在較高的不匹配度,所以需要在矽片上鍍一層Ta作過渡金屬層增加薄膜之間的附著力。操作步驟:首先,將處理好的矽片放在樣品托上,靶材Ta和靶材金均放在直流靶上,關(guan) 閉腔體(ti) 進行抽真空,使真空度達到3×10-5Pa;然後打開氬氣使腔體(ti) 得工作壓強是0.5Pa,接著開啟直流電源,在可以觀察到起輝後,於(yu) 室溫下進行濺射。首先在磁控濺射功率70W、氬氣流速為(wei) 35sccm條件下 濺射10nm的Ta層作為(wei) 過渡層,然後在磁控濺射功率30W、氬氣流速為(wei) 25sccm條件下濺射生長100nm的金層作為(wei) 該實驗的基底。


2.2橢偏儀(yi) 在位監控


2.2.1橢偏儀(yi)


圖2-1是實驗用的橢偏儀(yi) 測試裝置部分的實物圖,其型號是Ellip-SR-I。可以看到該部分由基座、樣品台、入射臂、出射臂探測器和角度盤組成。其中角度盤的精度是5°,即入射角度的變化是以5°為(wei) 單位進行調節的,其調節範圍在0-90°。如圖2-1所示,為(wei) 了保證垂直入射出射,樣品台的高度可以進行調節,此外整個(ge) 樣品台麵還可以在豎直方向上進行。當進行樣品測試時,第1步就是進出準直的調節,即使樣品測試麵在水平,當入射光垂直入射時可以垂直反射。


圖2-1橢偏儀(yi) 實物圖


2.2.2在位監控


1、Pb溶液體(ti) 係

在進行不同濃度溶液:5/10/15/20mMPb(CH3COO)2和1MCH3COONa混合溶液的實驗,Pb薄膜的沉積實驗用的是10mMPb(CH3COO)2和1MCH3COONa混合溶液。該混合溶液透明,但是由於(yu) CH3COO-的存在,溶液體(ti) 係不穩定性,每次實驗時都需要即時配製溶液。


2、Cu2O薄膜監控

進行Cu2O薄膜沉積時用的是0.02MCu(CH3COO)2,0.1MCH3COONa混合溶液,該溶液是淺藍色的,同樣存在不穩定性,實驗都需要重新配製。

橢偏儀(yi) 進行Cu2O薄膜監控示意圖2-2所示,沉積的裝置放在橢偏儀(yi) 的樣品台上,在電化學沉積的同時進行橢偏儀(yi) 測試,即可實現薄膜沉積的在位監測。


實驗中根據設計的電解池,使用CHI-660D電化學工作站設備采用恒流進行電化學沉積Cu2O薄膜,對沉積電流及沉積時間等參數的調節來調控Cu2O薄膜的生長。在進行電化學沉積過程中同時進行橢偏儀(yi) 的監測,第1組實驗是準在位測試,即每沉積180s後進行一次300nm到800nm的橢偏測試,測試的時間點分別是0s、180s、360s、540s、900s及1080s。第二組實驗是連續沉積1080s,在這期間同時進行橢偏測試,該組測試橢偏儀(yi) 取點時間大約是13s每個(ge) 點。


圖2-2橢偏儀(yi) 在位監測示意圖


了解更多橢偏儀(yi) 詳情,請訪問上海昊量光電的官方網頁:

https://www.weilancj.com/three-level-56.html


更多詳情請聯係昊量光電/歡迎直接聯係昊量光電

關(guan) 於(yu) 昊量光電:

上海昊量光電設備有限国产黄色在线观看是光電国产欧美在线專(zhuan) 業(ye) 代理商,国产欧美在线包括各類激光器、光電調製器、光學測量設備、光學元件等,涉及国产成人在线观看免费网站涵蓋了材料加工、光通訊、生物醫療、科學研究、國防、量子光學、生物顯微、物聯傳(chuan) 感、激光製造等;可為(wei) 客戶提供完整的設備安裝,培訓,硬件開發,軟件開發,係統集成等服務。

您可以通過我們(men) 昊量光電的官方網站www.weilancj.com了解更多的国产欧美在线信息,或直接來電谘詢4006-888-532。


相關(guan) 文獻:

[1] WONG H S P, FRANK D J, SOLOMON P M et al. Nanoscale cmos[J]. Proceedings of the IEEE, 1999, 87(4): 537-570.

[2] LOSURDO M, HINGERL K. ellipsometry at the nanoscale[M]. Springer Heidelberg New York Dordrecht London. 2013.

[3] DYRE J C. Universal low-temperature ac conductivity of macroscopically disordered nonmetals[J]. Physical Review B, 1993, 48(17): 12511-12526. DOI:10.1103/PhysRevB.48.12511.

[4] CHEN S, KÜHNE P, STANISHEV V et al. On the anomalous optical conductivity dISPersion of electrically conducting polymers: Ultra-wide spectral range ellipsometry combined with a Drude-Lorentz model[J]. Journal of Materials Chemistry C, 2019, 7(15): 4350-4362.

[5] 陳籃,周岩. 膜厚度測量的橢偏儀(yi) 法原理分析[J]. 大學物理實驗, 1999, 12(3): 10-13.

[6] ZAPIEN J A, COLLINS R W, MESSIER R. Multichannel ellipsometer for real time spectroscopy of thin film deposition from 1.5 to 6.5 eV[J]. Review of Scientific Instruments, 2000, 71(9): 3451-3460.

[7] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.

[8] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.

[9] YUAN M, YUAN L, HU Z et al. In Situ Spectroscopic Ellipsometry for Thermochromic CsPbI3 Phase Evolution Portfolio[J]. Journal of Physical Chemistry C, 2020, 124(14): 8008-8014.

[10] 焦楊.橢偏儀(yi) 在位表征電化學沉積的係統搭建.雲(yun) 南大學說是論文,2022.

[11] CANEPA M, MAIDECCHI G, TOCCAFONDI C et al. Spectroscopic ellipsometry of self assembLED monolayers: Interface effects. the case of phenyl selenide SAMs on gold[J]. Physical Chemistry Chemical Physics, 2013, 15(27): 11559-11565. DOI:10.1039/c3cp51304a.

[12] FUJIWARA H, KONDO M, MATSUDA A. Interface-layer formation in microcrystalline Si:H growth on ZnO substrates studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Journal of Applied Physics, 2003, 93(5): 2400-2409.

[13] FUJIWARA H, TOYOSHIMA Y, KONDO M et al. Interface-layer formation mechanism in (formula presented) thin-film growth studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Physical Review B - Condensed Matter and Materials Physics, 1999, 60(19): 13598-13604.

[14] LEE W K, KO J S. Kinetic model for the simulation of hen egg white lysozyme adsorption at solid/water interface[J]. Korean Journal of Chemical Engineering, 2003, 20(3): 549-553.

[15] STAMATAKI K, PAPADAKIS V, EVEREST M A et al. Monitoring adsorption and sedimentation using evanescent-wave cavity ringdown ellipsometry[J]. Applied Optics, 2013, 52(5): 1086-1093.

[16] VIEGAS D, FERNANDES E, QUEIRÓS R et al. Adapting Bobbert-Vlieger model to spectroscopic ellipsometry of gold nanoparticles with bio-organic shells[J]. Biomedical Optics Express, 2017, 8(8): 3538.

[17] ARWIN H. Application of ellipsometry techniques to biological materials[J]. Thin Solid Films, 2011, 519(9): 2589-2592.

[18] ZIMMER A, VEYS-RENAUX D, BROCH L et al. In situ spectroelectrochemical ellipsometry using super continuum white laser: Study of the anodization of magnesium alloy [J]. Journal of Vacuum Science & Technology B, 2019, 37(6): 062911.

[19] ZANGOOIE S, BJORKLUND R, ARWIN H. Water Interaction with Thermally Oxidized Porous Silicon Layers[J]. Journal of The Electrochemical Society, 1997, 144(11): 4027-4035.

[20] KYUNG Y B, LEE S, OH H et al. Determination of the optical functions of various liquids by rotating compensator multichannel spectroscopic ellipsometry[J]. Bulletin of the Korean Chemical Society, 2005, 26(6): 947-951.

[21] OGIEGLO W, VAN DER WERF H, TEMPELMAN K et al. Erratum to ― n-Hexane induced swelling of thin PDMS films under non-equilibrium nanofiltration permeation conditions, resolved by spectroscopic ellipsometry‖ [J. Membr. Sci. 431 (2013), 233-243][J]. Journal of Membrane Science, 2013, 437: 312..

[22] BROCH L, JOHANN L, STEIN N et al. Real time in situ ellipsometric and gravimetric monitoring for electrochemistry experiments[J]. Review of Scientific Instruments, 2007, 78(6).

[23] BISIO F, PRATO M, BARBORINI E et al. Interaction of alkanethiols with nanoporous cluster-assembled Au films[J]. Langmuir, 2011, 27(13): 8371-8376.

[24] 李廣立. 氧化亞(ya) 銅薄膜的製備及其光電性能研究[D]. 西南交通大學, 2016.

[25] 董金礦. 氧化亞(ya) 銅薄膜的製備及其光催化性能的研究[D]. 安徽建築大學, 2014.

[26] 張楨. 氧化亞(ya) 銅薄膜的電化學製備及其光催化和光電性能的研究[D]. 上海交通大學材料科 學與(yu) 工程學院, 2013.

[27] DISSERTATION M. Cellulose Derivative and Lanthanide Complex Thin Film Cellulose Derivative and Lanthanide Complex Thin Film[J]. 2017.

[28] NIE J, YU X, HU D et al. Preparation and Properties of Cu2O/TiO2 heterojunction Nanocomposite for Rhodamine B Degradation under visible light[J]. ChemistrySelect, 2020, 5(27): 8118-8128.

[29] STRASSER P, GLIECH M, KUEHL S et al. Electrochemical processes on solid shaped nanoparticles with defined facets[J]. Chemical Society Reviews, 2018, 47(3): 715-735.

[30] XU Z, CHEN Y, ZHANG Z et al. Progress of research on underpotential deposition——I. Theory of underpotential deposition[J]. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31(7): 1219-1230.

[31] PANGAROV n. Thermodynamics of electrochemical phase formation and underpotential metal deposition[J]. Electrochimica Acta, 1983, 28(6): 763-775.

[32] KAYASTH S. ELECTRODEPOSITION STUDIES OF RARE EARTHS[J]. Methods in Geochemistry and Geophysics, 1972, 6(C): 5-13.

[33] KONDO T, TAKAKUSAGI S, UOSAKI K. Stability of underpotentially deposited Ag layers on a Au(1 1 1) surface studied by surface X-ray scattering[J]. Electrochemistry Communications, 2009, 11(4): 804-807.

[34] GASPAROTTO L H S, BORISENKO N, BOCCHI N et al. In situ STM investigation of the lithium underpotential deposition on Au(111) in the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide[J]. Physical Chemistry Chemical Physics, 2009, 11(47): 11140-11145.

[35] SARABIA F J, CLIMENT V, FELIU J M. Underpotential deposition of Nickel on platinum single crystal electrodes[J]. Journal of Electroanalytical Chemistry, 2018, 819(V): 391-400.

[36] BARD A J, FAULKNER L R, SWAIN E et al. Fundamentals and Applications[M]. John Wiley & Sons, Inc, 2001.

[37] SCHWEINER F, MAIN J, FELDMAIER M et al. Impact of the valence band structure of Cu2O on excitonic spectra[J]. Physical Review B, 2016, 93(19): 1-16.

 [38] XIONG L, HUANG S, YANG X et al. P-Type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties[J]. Electrochimica Acta, 2011, 56(6): 2735-2739.

[39] KAZIMIERCZUK T, FRÖHLICH D, SCHEEL S et al. Giant Rydberg excitons in the copper oxide Cu2O[J]. Nature, 2014, 514(7522): 343-347.

[40] RAEBIGER H, LANY S, ZUNGER A. Origins of the p-type nature and cation deficiency in Cu2 O and related materials[J]. Physical Review B - Condensed Matter and Materials Physics, 2007, 76(4): 1-5.

[41] 舒雲(yun) . Cu2O薄膜的電化學製備及其光電化學性能的研究[D]. 雲(yun) 南大學物理與(yu) 天文學院,2019.

閱讀延伸

展示全部  up