依據實驗組前期對CU2O薄膜沉積的實驗,選擇-0.4mA進行兩(liang) 電極的恒流沉積,並用橢偏儀(yi) 進行在位監測,每沉積180s後進行300nm到800nm的橢偏測試。即在沉積180s、360s、540s、720s、900s、1080s後分別進行了橢偏儀(yi) 全譜測試,測試角度為(wei) 70°。
展示全部
橢偏儀(yi) 在位表征電化學沉積的係統搭建(二十八)- 中心能量的演變
1.短波範圍
圖4-13是CU2O激遷圖(b)和300nm-500nm擬合得到的不同沉積時間中心能量值(a)。從(cong) 圖4-1(a)中看到,在有自旋能級分裂時,一部分CU2O激子躍遷將如圖所示。圖(a)是在300nm-500nm波段用四振子Lorentz Oscillator+Drude模型擬合得到的不同沉積時間下的中心能量以及代表了不同類型的激子激發相應的能量線。可以看到180 s和900s得到了三個(ge) 擬合中心能量,其餘(yu) 時間得到了四個(ge) 中心能量。從(cong) 中心能量與(yu) 橫線的對比中看出,在沉積時間為(wei) 180s時的三個(ge) 中心能量分別為(wei) EOA/EOB(EOA/EOB表示該能量是EOA或者EOB激子吸收峰)、EOC/EOD和E1A激子吸收峰;360s出現的前兩(liang) 個(ge) 能量為(wei) EOA/EOB激子吸收峰,後兩(liang) 個(ge) 能量分別為(wei) EOC/EOD和E1A激子吸收峰;540s前兩(liang) 個(ge) 能量分別為(wei) EOC/EOD和E1A激子吸收峰,後兩(liang) 個(ge) 能量可能是E1B激子吸收峰,同時也可能是E2能級上的電子躍遷吸收峰;720s第1個(ge) 能量為(wei) EOC/EOD激子吸收峰,中間兩(liang) 個(ge) 為(wei) E1A激子吸收峰,zui後一個(ge) 能量超過在16eV,可引發E0、E1及E2能帶的躍遷,具體(ti) 屬於(yu) 哪個(ge) 激子吸收峰有待進一步驗證;900s時的三個(ge) 中心能量分別為(wei) EOC/EOD、E1A和E1B激子吸收峰;1080s的四個(ge) 中心能量分別屬於(yu) EODA、EOC、EOD 和E1A激子吸收峰。
圖4-13 (a)300nm-500nm擬合得到的不同沉積時間中心能量值;
(b)CU2O激子躍遷圖
2.長波範圍
由於(yu) 對0s時和其他沉積時間用的擬合方法是逐點擬合,所以不能得到相應的中心能量值,但是可以通過把擬合得到的值和對應的能量相關(guan) 聯,畫出0s時300nm-800nm及其餘(yu) 時間500nm-800nm的
圖,在對曲線線性部分進行擬合,得到的E軸的截距即為(wei) 中心能量,如4-14所示。圖4-14(a)是不同時間得到的在能量為(wei) 1.55-2.48eV範圍曲線,可以看到0s於(yu) 2.1eV後增加較快,且存1處的線性變化段。其餘(yu) 不同沉積時間得到的圖線變化不大,在1.55-2.1eV段與(yu) 0s的重合;在2.1-2.48eV段180s的增加後基本穩定,720s的介於(yu) 180s和其餘(yu) 時間之間。整體(ti) 上認為(wei) 1.55-2.4eV段更多反映的是基底的信息,沒有線性變化的階段。圖4-14(b)是0s時1.55eV-4.13eV的圖線,可看到除了前麵提到的線性擬合段,在後麵2.48-4.13eV段又存在兩(liang) 個(ge) 線性變化的區域,擬合如圖。
圖4-14(c)是0s時3段線性擬合得到的E軸截距,對應於(yu) 材料的能隙或電子的躍遷光吸收。從(cong) 圖可知前兩(liang) 個(ge) 截距在2-3eV之間,zui後一個(ge) 在3-4eV之間,所以0s時對應三個(ge) 能量。前兩(liang) 個(ge) 可能對應Au基底的表麵等離子體(ti) 共振吸收峰,zui後一個(ge) 可能對應3d、4d和6sp的帶間躍遷吸收以及6sp到7sp的導帶間躍遷吸收。
圖4-14 隨E的變化及不同波段擬合
(a) 不同時間1.55-2.48eV;
(b)0s對應的1.55eV-4.13eV;
(c)0s對應的擬合得到的E軸截距
了解更多橢偏儀(yi) 詳情,請訪問上海昊量光電的官方網頁:
https://www.weilancj.com/three-level-56.html
更多詳情請聯係昊量光電/歡迎直接聯係昊量光電
關(guan) 於(yu) 昊量光電:
上海昊量光電設備有限国产黄色在线观看是光電国产欧美在线專(zhuan) 業(ye) 代理商,国产欧美在线包括各類激光器、光電調製器、光學測量設備、光學元件等,涉及国产成人在线观看免费网站涵蓋了材料加工、光通訊、生物醫療、科學研究、國防、量子光學、生物顯微、物聯傳(chuan) 感、激光製造等;可為(wei) 客戶提供完整的設備安裝,培訓,硬件開發,軟件開發,係統集成等服務。
您可以通過我們(men) 昊量光電的官方網站www.weilancj.com了解更多的国产欧美在线信息,或直接來電谘詢4006-888-532。
參考文獻
[1] WONG H S P, FRANK D J, SOLOMON P M et al. Nanoscale cmos[J]. Proceedings of the IEEE, 1999, 87(4): 537-570.
[2] LOSURDO M, HINGERL K. ellipsometry at the nanoscale[M]. Springer Heidelberg New York Dordrecht London. 2013.
[3] DYRE J C. Universal low-temperature ac conductivity of macroscopically disordered nonmetals[J]. Physical Review B, 1993, 48(17): 12511-12526. DOI:10.1103/PhysRevB.48.12511.
[4] CHEN S, KÜHNE P, STANISHEV V et al. On the anomalous optical conductivity dISPersion of electrically conducting polymers: Ultra-wide spectral range ellipsometry combined with a Drude-Lorentz model[J]. Journal of Materials Chemistry C, 2019, 7(15): 4350-4362.
[5] 陳籃,周岩. 膜厚度測量的橢偏儀(yi) 法原理分析[J]. 大學物理實驗, 1999, 12(3): 10-13.
[6] ZAPIEN J A, COLLINS R W, MESSIER R. Multichannel ellipsometer for real time spectroscopy of thin film deposition from 1.5 to 6.5 eV[J]. Review of Scientific Instruments, 2000, 71(9): 3451-3460.
[7] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.
[8] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.
[9] YUAN M, YUAN L, HU Z et al. In Situ Spectroscopic Ellipsometry for Thermochromic CsPbI3 Phase Evolution Portfolio[J]. Journal of Physical Chemistry C, 2020, 124(14): 8008-8014.
[10] 焦楊景.橢偏儀(yi) 在位表征電化學沉積的係統搭建.雲(yun) 南大學說是論文,2022.
[11] CANEPA M, MAIDECCHI G, TOCCAFONDI C et al. Spectroscopic ellipsometry of self assembLED monolayers: Interface effects. the case of phenyl selenide SAMs on gold[J]. Physical Chemistry Chemical Physics, 2013, 15(27): 11559-11565. DOI:10.1039/c3cp51304a.
[12] FUJIWARA H, KONDO M, MATSUDA A. Interface-layer formation in microcrystalline Si:H growth on ZnO substrates studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Journal of Applied Physics, 2003, 93(5): 2400-2409.
[13] FUJIWARA H, TOYOSHIMA Y, KONDO M et al. Interface-layer formation mechanism in (formula presented) thin-film growth studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Physical Review B - Condensed Matter and Materials Physics, 1999, 60(19): 13598-13604.
[14] LEE W K, KO J S. Kinetic model for the simulation of hen egg white lysozyme adsorption at solid/water interface[J]. Korean Journal of Chemical Engineering, 2003, 20(3): 549-553.
[15] STAMATAKI K, PAPADAKIS V, EVEREST M A et al. Monitoring adsorption and sedimentation using evanescent-wave cavity ringdown ellipsometry[J]. Applied Optics, 2013, 52(5): 1086-1093.
[16] VIEGAS D, FERNANDES E, QUEIRÓS R et al. Adapting Bobbert-Vlieger model to spectroscopic ellipsometry of gold nanoparticles with bio-organic shells[J]. Biomedical Optics Express, 2017, 8(8): 3538.
[17] ARWIN H. Application of ellipsometry techniques to biological materials[J]. Thin Solid Films, 2011, 519(9): 2589-2592.
[18] ZIMMER A, VEYS-RENAUX D, BROCH L et al. In situ spectroelectrochemical ellipsometry using super continuum white laser: Study of the anodization of magnesium alloy [J]. Journal of Vacuum Science & Technology B, 2019, 37(6): 062911.
[19] ZANGOOIE S, BJORKLUND R, ARWIN H. Water Interaction with Thermally Oxidized Porous Silicon Layers[J]. Journal of The Electrochemical Society, 1997, 144(11): 4027-4035.
[20] KYUNG Y B, LEE S, OH H et al. Determination of the optical functions of various liquids by rotating compensator multichannel spectroscopic ellipsometry[J]. Bulletin of the Korean Chemical Society, 2005, 26(6): 947-951.
[21] OGIEGLO W, VAN DER WERF H, TEMPELMAN K et al. Erratum to ― n-Hexane induced swelling of thin PDMS films under non-equilibrium nanofiltration permeation conditions, resolved by spectroscopic ellipsometry‖ [J. Membr. Sci. 431 (2013), 233-243][J]. Journal of Membrane Science, 2013, 437: 312..
[22] BROCH L, JOHANN L, STEIN N et al. Real time in situ ellipsometric and gravimetric monitoring for electrochemistry experiments[J]. Review of Scientific Instruments, 2007, 78(6).
[23] BISIO F, PRATO M, BARBORINI E et al. Interaction of alkanethiols with nanoporous cluster-assembled Au films[J]. Langmuir, 2011, 27(13): 8371-8376.
[24] 李廣立. 氧化亞(ya) 銅薄膜的製備及其光電性能研究[D]. 西南交通大學, 2016.
[25] 董金礦. 氧化亞(ya) 銅薄膜的製備及其光催化性能的研究[D]. 安徽建築大學, 2014.
[26] 張楨. 氧化亞(ya) 銅薄膜的電化學製備及其光催化和光電性能的研究[D]. 上海交通大學材料科 學與(yu) 工程學院, 2013.
[27] DISSERTATION M. Cellulose Derivative and Lanthanide Complex Thin Film Cellulose Derivative and Lanthanide Complex Thin Film[J]. 2017.
[28] NIE J, YU X, HU D et al. Preparation and Properties of Cu2O/TiO2 heterojunction Nanocomposite for Rhodamine B Degradation under visible light[J]. ChemistrySelect, 2020, 5(27): 8118-8128.
[29] STRASSER P, GLIECH M, KUEHL S et al. Electrochemical processes on solid shaped nanoparticles with defined facets[J]. Chemical Society Reviews, 2018, 47(3): 715-735.
[30] XU Z, CHEN Y, ZHANG Z et al. Progress of research on underpotential deposition——I. Theory of underpotential deposition[J]. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31(7): 1219-1230.
[31] PANGAROV n. Thermodynamics of electrochemical phase formation and underpotential metal deposition[J]. Electrochimica Acta, 1983, 28(6): 763-775.
[32] KAYASTH S. ELECTRODEPOSITION STUDIES OF RARE EARTHS[J]. Methods in Geochemistry and Geophysics, 1972, 6(C): 5-13.
[33] KONDO T, TAKAKUSAGI S, UOSAKI K. Stability of underpotentially deposited Ag layers on a Au(1 1 1) surface studied by surface X-ray scattering[J]. Electrochemistry Communications, 2009, 11(4): 804-807.
[34] GASPAROTTO L H S, BORISENKO N, BOCCHI N et al. In situ STM investigation of the lithium underpotential deposition on Au(111) in the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide[J]. Physical Chemistry Chemical Physics, 2009, 11(47): 11140-11145.
[35] SARABIA F J, CLIMENT V, FELIU J M. Underpotential deposition of Nickel on platinum single crystal electrodes[J]. Journal of Electroanalytical Chemistry, 2018, 819(V): 391-400.
[36] BARD A J, FAULKNER L R, SWAIN E et al. Fundamentals and Applications[M]. John Wiley & Sons, Inc, 2001.
[37] SCHWEINER F, MAIN J, FELDMAIER M et al. Impact of the valence band structure of Cu2O on excitonic spectra[J]. Physical Review B, 2016, 93(19): 1-16.
[38] XIONG L, HUANG S, YANG X et al. P-Type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties[J]. Electrochimica Acta, 2011, 56(6): 2735-2739.
[39] KAZIMIERCZUK T, FRÖHLICH D, SCHEEL S et al. Giant Rydberg excitons in the copper oxide Cu2O[J]. Nature, 2014, 514(7522): 343-347.
[40] RAEBIGER H, LANY S, ZUNGER A. Origins of the p-type nature and cation deficiency in Cu2 O and related materials[J]. Physical Review B - Condensed Matter and Materials Physics, 2007, 76(4): 1-5.
[41] 舒雲(yun) . Cu2O薄膜的電化學製備及其光電化學性能的研究[D]. 雲(yun) 南大學物理與(yu) 天文學院,2019.
展示全部