展示全部
光谱透过率测量系统
视网膜区域的高分辨率成像研究一直都是国外生物医学方面的研究重点。实验表明如果能够在7mm 瞳孔直径的情况下也能以衍射极限成像的话,就能用仪器顺利看到视网膜上的感光细胞。但人眼由于角膜及晶状体结构的不完美使经过的光线产生波前误差,而且其大小和形式因人因时而变,不可能采用施加固定校正的方法解决。这使得一般的眼科成像系统无法达到衍射极限,也就无法实现高分辨率的眼科成像,自适应光学正好可以解决这样的问题。通过眼底视网膜图像,可以发现多种人体疾病病变信息,如心脑血管及内分泌失调,正常人和老年性黄斑,中心性浆液性脉络视网膜病变等;但人眼象差除离焦、像散外,还包含高阶像差,降低了成像分辨力,传统的眼科测量技 ...
许对缺陷进行高分辨率成像。在单面测量的背景下,研究了兰姆波在点焊附近的传播。未来的工作将包括不同类型的样品材料和几何形状的测量,以及快速内联的国产成人在线观看免费网站开发无损检测设置。您可以通过我们的官方网站了解更多的国产欧美在线信息,或直接来电咨询4006-888-532。 ...
示出大视场下高分辨率成像能力。在共聚焦扫描模式下,Mesolens 可以从毫米级样本中收集大量信息,并已用于对整个固定的 12.5 天大的完整小鼠胚胎进行成像。光学系统与尺度相关(scale-dependent)的几何像差从根本上限制了显微镜的 空间带宽积,使得可实现的分辨率和视场是一对矛盾量。当前有两种方法可以绕过这个难题:(1)图像拼接,大尺度的样本通过逐个小区域扫描完成整体采集;(2) 傅里叶叠层成像,使用大视场、低分辨率成像系统,通过采集大量不同照明条件下的大视场低分辨率图像,在傅里叶域进行后处理获得最终图像。不幸的是,它们在高分辨率下的性能代价是牺牲了时间分辨率。例如,在傅立叶叠层显 ...
熟,但高速和高分辨率成像的主要挑战在于当前成像系统的处理能力不足。高速高分辨率记录采集的海量数据给系统的存储和传输模块带来巨大压力,无法进行长时间的采集。近几十年来,计算摄影的兴起为研究人员提供了新思路,并在超分辨率、去模糊、深度估计等许多与成像相关的领域取得了突破。快照压缩成像旨在实现从二维探测器捕获的单个编码快照中重建视频和高光谱图像等高维数据。视频SCI系统通常由物镜、随时间变化的掩模、单色或彩色传感器和一些额外的中继镜头组成。在每次曝光期间,数十个时间帧由相应的随时间变化的掩膜调制,然后集成到单个快照中。SCI 系统中的高维数据重建可以表述为线性不适定模型(ill-posed line ...
像通常涉及在高分辨率成像之前对较大样本进行物理二次采样。物理子采样对数据配准和收集正确或代表性子样本的要求带来了挑战。当前对完整器官实现多尺度三维成像的探索技术有光透明结合光片显微镜或光学投影层析、高分辨率核磁共振、多光束电子显微镜等。然而,对完整的成年人类器官实现光透明需要数月的时间,此时组织形态已经发生了变化,且光片显微镜目前无法对完整状态的整个器官进行成像。高分辨率核磁共振在离体人脑可实现100um每体素的分辨率,但是耗时约100小时,且无法实现细胞级分辨率。多光束电子显微镜可以提供从细胞到亚细胞尺度的人体组织图像,但不能完成完整器官成像所需的体积采集。同步加速器X射线层析(synchr ...
织体积内实现高分辨率成像,从而提高成像通量、灵活性和成功率的技术。文章创新点:基于此,美国普渡大学的Bowen Wei(第1作者)和Meng Cui(通讯作者)等人提出了一种清晰光学匹配全景探测通道技术(Clear Optically Matched Panoramic Access Channel Technique, COMPACT)用于深层脑部大体积成像。在插入体积与 GRIN 透镜相同的情况下,COMPACT 可以使探测到的组织体积增加两到三个数量级。原理解析:(1)COMPACT 的核心思想是在匹配微型GRIN透镜的传统双光子显微镜基础上摒弃将透镜直接插入大脑方法,并在组织中插入了一 ...
国产成人在线观看免费网站在天文学高分辨率成像领域中。在20世纪80年代末期,天文学家研制了一套全新的自适应光学系统,取名为“COME-ON”,该系统用于新西兰智利欧洲南部天文台直径约为3.6 m的望远镜商,其中使用的变形镜有19个单元。在自由空间光通信系统中,为了解决大气湍流引起的波前畸变,人们提出使用自适应光学系统实现畸变波前的波长。涡旋光和球面电磁波示意图对于涡旋光束在大气湍流中传输产生的波前畸变,可通过自适应广西系统进行校正和补偿。传统自适应光学技术是一种电子学和光学相结合的技术,能够实时探测畸变波前并予以实时校正,使光学系统具有适应自身和外界条件变化的能量,从而保持较佳工作状态,提高光束的质量和改善通信系 ...
生理条件下的高分辨率成像成为可能,已经彻底改变了生命科学。激光扫描通常是用一对振镜或声光调制器来完成的。在这些扫描模式中,通过以光栅方式逐点逐行移动激光束来重建图像。这种方法的缺点是时域分辨率受到扫描器有限响应时间的限制。即使有可能提高设备的扫描速度,也会出现一个更基本的限制。为了以更短的每像素停留时间(即光束停留在样品中某一点并从该点收集光信号的时间)来维持足够的荧光信号,通常需要增加激光强度。然而信号采集的速率受到存在的发色团分子的数量和它们被激发的频率的限制。因此即使在完全没有光损伤的情况下,激发强度也不能不断增加以实现更快的扫描或更短的停留时间,因为无论激发功率如何,发色团或荧光团在单 ...
时间,可通过高分辨率成像技术(如共聚焦显微镜或双光子显微镜)结合使用等特点,近年来已经广泛国产成人在线观看免费网站于生物学、医学研究和生命科学等相关领域。那么,FLIM是如何实现如此强大的功能呢?FLIM的首要任务就在于测量荧光寿命(Fluorescence lifetime, FL),待测物体被一束激光激发后,该物体吸收能量后,从基态跃迁到某一激发态上,再以辐射跃迁的形式发出荧光并回到基态。将激发光关闭后,分子的荧光强度也将随时间逐渐下降。假定一个无限窄的脉冲光(δ函数)激发n0个荧光分子到其激发态,处于激发态的分子将通过辐射或非辐射跃迁返回基态。假定两种衰减跃迁速率分别为Γ和Knr,则激发态衰减速率可表示为: ...
电子显微镜的高分辨率成像技术,如带偏振分析的二次电子显微镜(SEMPA),或光子发射电子显微镜(PEEM)或使用磁探针的技术(磁力显微镜(MFM)或自旋极化扫描隧道显微镜(STM),通常局限于小的外部磁场。磁光显微镜没有这样的限制。然而,由于传统(远场)光学显微镜的横向分辨率受到衍射的限制,大约只能达到光波长的一半,因此纳米结构只能通过x射线显微镜或扫描近场光学显微镜(SNOM)在可见光范围内成像。用于磁光研究的相当紧凑和振动隔离的特高压室连接到配备薄膜制备设施的特高压系统,以及用于表征薄膜结构和形态的STM和低能电子衍射(LEED)。结合极性和纵向MOKE, kerr显微镜和Sagnac-S ...
或 投递简历至: hr@auniontech.com