展示全部
振拉曼光谱的声子模式拉曼散射实验可以测量由振动对称而具有拉曼活性的晶体的特定声子模式的能量。考虑到原子构型的对称性,每个晶体都可以被归类到一个特定的点群,这决定了可能的拉曼主动振动模式。精确的声子能量是通过考虑振动模式、原子质量和它们的相互作用强度来确定的。二维材料的每一层都可以指定一个特定的点群,一个特定的声子是否可以通过拉曼散射到达取决于声子模的对称性和晶体的对称性。对于少层二维材料,晶体的对称性取决于层数。严格地说,在相同的材料中,不同厚度的相似振动模式,其模态符号应该是不同的。然而,在许多情况下,为了方便起见,人们使用块晶体的统一表示法来表示其他厚度的模态。声子模的层数依赖性很特别,以 ...
,激光于系统声子进行相互作用导致最后光子能量增加或者减少,而由这些能量的变化可得知声子模式。下图展示了显微拉曼光谱原理光路以及使用的相关器件:其中用来进行拉曼光谱实验的激光器我们称之为拉曼激光器,拉曼激光器区别于普通激光器的一个最大不同就是激光器的线宽,就是激光器的单色性,一般来说,普通激光器的线宽在0.1纳米到几个纳米之间,而拉曼激光器最低要求激光器线宽不能超过0.001纳米,最好是使用单纵模激光器进行实验。法国Oxxius国产黄色在线观看单纵模拉曼激光器因为拉曼信号相对激光强度差了6-8个数量级,所以一般采用两片拉曼滤色片或者三片拉曼滤色片滤除激光器本身的信号干扰,拉曼滤色片也不同于普通的荧光滤色片, ...
。2D峰是双声子共振二阶拉曼峰,用来反映多层石墨烯的堆垛方式。二硫化钼MoS2如上图是首尔国立大学Takhee Lee的研究工作,用拉曼光谱仪(Xper Ram200)测试了MoS2的拉曼谱图。E12g是MoS2的面内振动模式,拉曼峰在380cm-1处,A1g是MoS2的层间振动模式,拉曼峰在400cm-1处。可以通过这两个拉曼峰的位移差来表征MoS2的层数。如图为MoS2的E12g和A1g拉曼峰的成像图,由此可见合成的三角形确实是MoS2样品层,并且图2(a)和(b)的图像中没有观察到关于峰位置的任何显著偏差,这说明合成了均匀的MoS2薄膜。这些成像在这两个特定频率下显示均匀的强度,说明Mo ...
量相反的两个声子参与的双共振拉曼过程,在碳原子sp2杂化的材料中都会出现。石墨烯根据边缘的不同,具有不同的手性,根据D峰的强度可以识别拉曼边缘的手性。碳纳米管如图是单根单壁碳纳米管的拉曼光谱,一个主要特征是位于160~300cm-1区间的呼吸振动模式,与全部碳原子在径向的对称运动相关。有实验表面,径向呼吸振动模式的频率与单根碳纳米管的直径成反比。在碳纳米管形成管束时,由于被近邻纳米管施加的空间限制,呼吸模式出现向高频方向6~20cm-1的偏移。在1250~1450cm-1区间所观察到的碳纳米管D峰与激发光能量之间有线性关系。参考文献[1] 安德里亚·卡罗·费拉里.从纳米管到金刚石:碳材料的拉曼 ...
后通过电子-声子碰撞传递能量。这可通过双温模型(2TM)描述,电子温度为Te,声子温度为Tp。 最后,电子、声子间的热平衡在几皮秒内到达。双温模型条件达到热平衡(Te=Tp)且样品层内声子弛豫(Tp递减)已经开始。薄膜传感器中的电子-声子演化图1. (a) 150纳米和(b) 50纳米厚的铝膜表面(红色)和铝/二氧化硅界面(蓝色)的电子Te(实线)和声子Tp(虚线)温度如图1红线,铝中电子温度迅速升高,迅速驰豫,代表能量从电子快速转移到声子。如图1蓝线,150 nm传感器在界面处没有明显的热传递,50 nm的传感器在界面处电子温度明显增加。图2. (a)、(b):声子温度弛豫,(c)、(d): ...
薄膜,电子-声子耦合,温度,金,铝,铬,铂,铜,表一.用于2 TM模型计算的材料列出的属性包括电子-声子耦合常数(g)、电子比热常数(γe)、300 K温度下的热容常数(C1)、电子热导率(λe)和声子热导率(λl)。声子弛豫起始时间trp由2 TM模型计算获得。傅里叶频谱分析图1.金和铝在10 KHz归一化的频率响应幅度的比较。虚线代表1TM温度模式,实线蓝色和橙色代表2TM温度模式光谱,红色代表半峰全宽下100 fs激光泵浦脉冲的光谱为了获得材料的频率响应,将时域谱进行傅里叶变换可得到图1中的频域谱,其中蓝色和橙色的实线是在50 nm厚换能器的顶面的电子温度的光谱。这些光谱可以分为四个不同 ...
子产生战胜了声子产生。为了应对这一挑战,专门为低温高效作业设计了两种新设计,分别称为单井注入器设计[17]和“超强耦合”主动设计[18]。单井注入器设计体现在注入器状态。从单个注入井开始,该结构中只有一个注入井状态。这种注入器状态的空间和能量位置经过精心设计,以便在开启状态下建立“热正向填充”方案。该方案有利于种群反转和载体传输。这样可以使内部量子效率和电压效率Z大化。在这种结构下,WPE为53%,这代表了任何QCL的高值。多年来,在4.7 μm的特定波长附近已经出现了几个重要的突破。大多数这些突破可以很容易地适用于其它中红外波长。在所有的一切中,材料质量是重要的,并强烈地影响差分增益和在设备 ...
为二维带中的声子与通常的单声子拉曼过程不同,具有有限的动量。由于散射过程不仅敏感地依赖于所涉及的声子模,而且还依赖于区域边界附近电子带的细节,因此线的形状随着激发能的变化而变化。在各向同性tmd的情况下,强激子效应强烈影响光学性质。当激发能与A或B激子的能量相匹配时,由于强共振效应,许多禁限拉曼模得到增强。Davydov分裂模在某些材料中只在一定的激发能范围内观察到。对于各向异性的二维材料,极化依赖随激发能的变化而变化。您可以通过我们的官方网站www.auniontech.com了解更多拉曼光谱仪、荧光寿命、光电流的相关国产欧美在线信息,或直接来电咨询4006-888-532。 ...
曼散射依赖于声子对光的非弹性散射,其效率非常低(通常每约105-107个光子中就会产生一个拉曼散射光子),导致拉曼散射截面为10−26-10−31cm2。如果被探测材料的可用散射体积非常小,就像二维半导体的情况(散射体积等于激光光斑面积乘以µ2范围内的面积乘以二维材料的亚纳米厚度),这是特别关键的。因此,测量激光功率密度保持在损伤阈值以下通常需要很长的采集时间,以获得足够好的信噪比。关于第②个限制,传统光学测量中的SR是由光学衍射极限(使用高数值孔径物镜的激发波长的大约一半)决定的。因此,在现代微拉曼装置中,当使用可见范围内的较短激发波长时,可以实现的较小探测尺寸约为200 nm。然而一些因素 ...
布里渊区中心声子分支的数量对于任何这些叠加序列都是相同的。要使声子模具有拉曼活性,最重要的参数是非零极化张量。一阶拉曼模的极化张量决定了各自拉曼模的拉曼强度。拉曼张量和散射几何的结合定义了特定声子模式的拉曼选择规则,从而确定了拉曼散射效率。对于已知点群的给定晶体结构,其振动模数可由群论分析的不可约表示得到。然后,根据相应的基本函数确定拉曼有源模式。因此,为了正确理解二维材料的拉曼光谱,了解特定晶体各自的点群(空间群)是很重要的。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限国产黄色在线观看是光电国产欧美在线专业代理商,国产欧美在线包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应 ...
或 投递简历至: hr@auniontech.com