短脉冲光进行激发(相对于样品的寿命较短),然后直接(即通过门控检测或脉冲采样)或使用时间分辨电子技术记录荧光分子的指数衰减如图1(a)及1(b)。另外,频域技术也可以测量荧光寿命如图1(c)和1(d)。这里,激励是连续的,随着时间的推移,振幅调制为正弦波。荧光信号的相位和振幅随激发波的变化而变化。通过绘制在一定调制频率范围内的相位变化,可以看到荧光团的相位延迟和振幅调制如图1(d)。得到的荧光正弦信号可以在频域解调,以量化荧光强度指数衰减引起的延迟。图1FLIM常见的实现是使用一种称为TCSPC的快速电子方法如图1(a)。在TCSPC中,一个快速秒表测量一个激发光子和发射光子。这个时间定义了每 ...
拉曼显微镜的激发需要(至少)两个激光波长,其中一个波长必须是可调的,以匹配分子振动频率的差频。此外已经证明,用几皮秒的激光脉冲宽度激发CARS和SRS可以理想地平衡高效生成非线性信号所需的高峰值功率与相对狭窄的光谱带宽(<1 nm)的要求,以匹配分子振动的固有线宽。对于高速成像,至少需要10Mhz的重复频率,理想情况下应该更高。这是因为在视频速率成像中,数据是以每秒1000万像素的速度获取的,并且CARS至少需要每个像素发射一个激光(对于带有调制传输检测的SRS至少需要两个激光)。此外,近红外光谱区域的激光激发已被证明能较大限度地减少CARS中非共振背景的产生,与可见光激发相比,提供了减 ...
在短时间内被激发到更高的能级。电子将经历振动弛豫到激发态的最低振动水平(记为S1),这是一种称为内转换的非辐射过程。从S1电子态,分子通过辐射或非辐射过程回到基态。图1表示了在这些能级中发生的不同发光现象。荧光是分子(荧光团)通过发射可检测的光子(时间尺度为)衰减到基态的辐射过程。荧光发射发生在激发电子能级最低的位置(S1)。这种来自最低激发电子能级的强制发射确保了发射光谱保持不变,并且与激发波长无关。由于振动弛豫和内部转换中的能量损失,发射的荧光光子的能量较低(即发射发生在比激发更长的波长)。这种发射波长的位移称为斯托克斯位移。另一个主要发光过程,磷光,通过被称为系统间交叉(ISC)的过程发 ...
光分子因为受激发射而产生荧光信号,接着继续照射使这些发光的荧光分子产生漂白, 在下一轮不能被激发光再次激活。之后交替使用405nm和561nm激光来进行激活,激发和漂白其他的荧光分子。往复循环,直至全部完成稀疏标记的细胞成像。图1展示了使用光激活定位显微技术PALM 定位单个荧光分子最后实现超光学衍射极限分辨率成像的示意图。PALM的成像方法只能观察基于细胞外源表达的蛋白质。图1.PALM超分辨率显微成像系统原理及示意图PALM超分辨系统系统部分组成及光路结构:(1)倒置荧光显微镜:可以用于激光扫描共焦显微成像或者单分子PALM显微成像。(2)半导体激光:405nm激光器作为激活光,561nm ...
,由于相干受激发射过程[1]能产生约103-105倍的增强拉曼信号,可以实现高达视频速率(约25帧/s)[2]的高速成像。SRS显微镜继承了自发拉曼光谱的优点, 是一种能够快速开发、label-free的成像技术,同时具有高灵敏度和化学特异性[3-6], 在许多生物医学研究的分支显示出国产成人在线观看免费网站潜力,包括细胞生物学、脂质代谢、微生物学、肿瘤检测、蛋白质错误折叠和制药[7-11]。特别的是,SRS在对新鲜手术组织和术中诊断的快速组织病理学方面表现出色,与传统的H&E染色几乎完全一致[12,13]。此外,SRS能够根据每个物种的光谱信息,对多种组分的混合物进行定量化学分析[6,7,14]。尽管在 ...
可重复的单击激发·内部传感器评估和过程控制·自动搜索和调整冲击力·位置的变化是自动预测的·通过附件配置脉冲特性·通过远程控制或集成到客户系统中来触发功能·在德国设计和组装·CE认证1.确保单次激发双重撞击激励可以在时域和频域检测到2.丰富的配件支持不同的传感器-尖端-配重的组合。综述上文介绍WaveHitMAX - 一款用于全自动冲击测试的智能脉冲锤,在全新的AI智能脉冲领域实现真正意义上的全自动智能脉冲锤!关于Gfai techGfai tech GmbH一直在生产和销售"德国制造"的声音和振动测量和分析创新国产欧美在线超过15年。作为国产成人在线观看免费网站计算机科学促进会(GFai)的100%子 ...
下。通过增加激发光的强度来增加荧光灯的数量是不可行的,因为这会伤害鱼类。图2 HiCAM高速像增强荧光相机附在荧光显微镜上实验装置用安装有Lambert HiCAM高速摄像系统的荧光显微镜对斑马鱼进行研究(图2)。将鱼固定在凝胶中,从下方照射。DsRed蛋白的荧光从红细胞中发出。这种光向各个方向发射,其中一些光以相反的方向穿过激光的光路。但是,荧光通过二色镜被定向到相机上,而不是被反射回光源。任何散射的激发光都被二色镜反射。滤光片将去除任何背景光,只透射红细胞荧光发出波长的光。图像传感器将捕捉进来的荧光。捕捉将以每秒数百或数千帧的帧率下进行,每帧的曝光时间数量级在几毫秒到几毫秒的一小部分。电子 ...
体中载流子的激发和复合等。正是由于这个缘故,在飞秒激光诞生后的相当长的一段时间内,飞秒激光主要是用来研究物理、化学领域微观过程超快现象的一个技术,从而在物理、化学和生物领域完成了大量的超快过程的研究,发现了大量的新的超快现象,解释了大量原子、分子微观运动规律,成为多个基础学科研究领域中相当引人瞩目并获得累累成果的研究方向。二、飞秒激光的功率飞秒激光的峰值功率是指脉冲持续时间内所具有的瞬时功率,即E/r,E为飞秒脉冲包络内所携带的能量,r为飞秒脉冲包络的j大值一半所应对的时间宽度。由于r为极短的10-15s量级,即使其携带的能量为毫焦耳量级(10-3J),其峰值功率也高达1012W(TW,太瓦) ...
)激光器进行激发。由于可见或近红外激光器的波长更短,拉曼显微镜的空间分辨率可以达到亚微米级。另一方面,红外光的波长为几微米。对于许多显微镜的国产成人在线观看免费网站来说,其空间分辨率被认为是很差的。2)水在红外区域有强烈的吸收。对于富含水的环境(如生物样品),红外光会受到强烈的背景吸收。因此,在某些情况下,拉曼是不错的选择。与占主导地位的瑞利散射相比,拉曼散射非常弱。为了获得合理的信噪比,通常需要几秒钟的长积分时间。这对于常规光谱学来说可能不是问题,但对于光谱成像来说,可能需要几个小时才能得到一个视野。为了增强信号,多年来已经开发了几种不同的方法。基于质子的方法,如表面增强拉曼光谱,进一步降低检测极限到单分子水平 ...
束水平放置以激发相同的点,或彼此非常接近的点(图2,顶部)。在所有使用DOE的实验中,我们确保每个小束都有足够的功率,能够充分激发荧光团。在比较单束和五束成像模式的实验中,我们将DOE保留在原位,并在两种实验中生成5个小波束,它的区别是在单束实验中,我们简单地在中间成像平面放置一个简单的虹膜隔膜,作为四个小波束路径上的屏障,只允许一个通过)。在这些条件下,在800 nm处,单个中心光束对样品的功率为24 mW,而所有五束光的功率之和对样品的功率为108 mW,其他四束的平均功率为21 mW,每个都在平均值的5%以内。检镜扫描与单光束双光子光栅扫描成像相同,并使用放大光电倍增管(PMT)进行检测 ...
或 投递简历至: hr@auniontech.com